965 resultados para Long-term effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The incidence of Clostridium difficile -associated diarrhea (CDAD) is increasing worldwide likely because of increased use of broad spectrum antibiotics and the introduction of a clonal hyper-virulent strain called the BI strain. Short-term complications of CDAD include recurrent disease, requirement for colectomy, and persistent disease. However, data on the long-term consequences of CDAD are scarce. Among other infectious diseases (Shigella, Salmonella, and Campylobacter), long-term consequences such as irritable bowel syndrome (IBS), chronic dyspepsia/diarrhea, and other GI effects have been noted. Since the mechanism of action of these agents is similar to C.difficile, we hypothesized that patients with CDAD have greater likelihood of developing IBS and other functional gastrointestinal disorders (FGIDs) in the long-term as compared to a general sample of recently hospitalized patients. ^ Objective. To evaluate the long-term gastrointestinal complications of CDAD, (IBS, functional diarrhea, functional abdominal bloating, functional constipation and functional abdominal pain syndrome). ^ Methods. The current study was a secondary analysis of a previously completed observational case-control outcome study. Adult CDAD patients at St. Luke's Episcopal Hospital, Houston (SLEH) were followed up and interviewed by telephone six months after the initial diagnosis thereafter evaluated for the development of IBS and other FGIDs. A total of 46 patients with CDAD infection were recruited at SLEH between May-November 2007. The comparators were patients hospitalized in SLEH within one month before or after the admission of the reference case, hospital length of stay within one week longer or shorter than reference case, and age within 10 years more or less than the reference case. Cases and comparators were compared using Fisher's exact test. A p<0.05 was considered significant. ^ Results. Thirty CDAD patients responded to the questionnaires and were compared to 40 comparators. No comparator developed a FGID, while 3 (10%) CDAD patients developed new onset IBS (p=0.07), 4 (13.3%) developed new onset Functional Diarrhea (p=0.03), and 3 (10%) developed new onset Functional Constipation (p=0.07). No patient developed Functional Abdominal Bloating and Functional Abdominal Pain Syndrome. ^ Conclusion. In this study, new onset functional diarrhea was significantly more common in patients CDAD within six months after initial infection compared to matched controls.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work examines the role of cAMP in the induction of the type of long-term morphological changes that have been shown to be correlated with long-term sensitization in Aplysia.^ To examine this issue, cAMP was injected into individual tail sensory neurons in the pleural ganglion to mimic, at the single cell level, the effects of behavioral training. After a 22 hr incubation period, the same cells were filled with horseradish peroxidase and 2 hours later the tissue was fixed and processed. Morphological analysis revealed that cAMP induced an increase in two morphological features of the neurons, varicosities and branch points. These structural alterations, which are similar to those seen in siphon sensory neurons of the abdominal ganglion following long-term sensitization training of the siphon-gill withdrawal reflex, could subserve the altered behavioral response of the animal. These results expose another role played by cAMP in the induction of learning, the initiation of a structural substrate, which, in concert with other correlates, underlies learning.^ cAMP was injected into sensory neurons in the presence of the reversible protein synthesis inhibitor, anisomycin. The presence of anisomycin during and immediately following the nucleotide injection completely blocked the structural remodeling. These results indicate that the induction of morphological changes by cAMP is a process dependent on protein synthesis.^ To further examine the temporal requirement for protein synthesis in the induction of these changes, the time of anisomycin exposure was varied. The results indicate that the cellular processes triggered by cAMP are sensitive to the inhibition of protein synthesis for at least 7 hours after the nucleotide injection. This is a longer period of sensitivity than that for the induction of another correlate of long-term sensitization, facilitation of the sensory to motor neuron synaptic connection. Thus, these findings demonstrate that the period of sensitivity to protein synthesis inhibition is not identical for all correlates of learning. In addition, since the induction of the morphological changes can be blocked by anisomycin pulses administered at different times during and following the cAMP injection, this suggests that cAMP is triggering a cascade of protein synthesis, with successive rounds of synthesis being dependent on successful completion of preceding rounds. Inhibition at any time during this cascade can block the entire process and so prevent the development of the structural changes.^ The extent to which cAMP can mimic the structural remodeling induced by long-term training was also examined. Animals were subjected to unilateral sensitization training and the morphology of the sensory neurons was examined twenty-four hours later. Both cAMP injection and long-term training produced a twofold increase in varicosities and approximately a fifty percent increase in the number of branch points in the sensory neuron arborization within the pleural ganglion. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MARECHIARA-mesozooplankton dataset contains mesozooplankton data collected in the ongoing time-series at Sation MC (40°48.5' N, 14°15' E) in the Gulf of Naples. This dataset spans over the period 1984-2006 and contains data of mesozooplankton abundance and species composition as well as biomass (as dry weight). Mesozooplankton was regularly sampled in 1984-1990 and 1995-2006, only a few samples were collected in 1991-1992 and no samples in 1993-1994. During the first period of the series sampling frequency was fortnightly, and weekly since 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification, a process caused by the continuous rise of atmospheric CO2 levels, is expected to have a profound impact on marine invertebrates. Findings of the numerous studies conducted in this field indicate high variability in species responses to future ocean conditions. This study aimed at understanding the effects of long-term exposure to elevated pCO2 conditions on the performance of adult Echinometra sp. EE from the Gulf of Aqaba (Red Sea). During an 11-month incubation under high pCO2 (1,433 µatm, pHNBS 7.7) and control (435 µatm, pHNBS 8.1) conditions, we examined the urchins' somatic and gonadal growth, gametogenesis and skeletal microstructure. Somatic and gonadal growths were exhibited with no significant differences between the treatments. In addition, all urchins in the experiment completed a full reproductive cycle, typical of natural populations, with no detectable impact of increased pCO2 on the timing, duration or progression of the cycle. Furthermore, scanning electron microscopy imaging of urchin tests and spines revealed no signs of the usual observed effects of acidosis, such as skeletal dissolution, widened stereom pores or non-smoothed structures. Our results, which yielded no significant impact of the high pCO2 treatment on any of the examined processes in the urchins studied, suggest high resistance of adult Echinometra sp. EE to near future ocean acidification conditions. With respect to other findings in this area, the outcome of this study provides an example of the complicated and diverse responses of echinoids to the predicted environmental changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.