963 resultados para Liver and ethanol
Resumo:
PURPOSE: The biokinetics and dosimetry of (111)In-DOTA-NOC-ATE (NOCATE), a high-affinity ligand of SSTR-2 and SSTR-5, and (111)In-DTPA-octreotide (Octreoscan?, OCTREO) were compared in the same patients. METHODS: Seventeen patients (10 men, 7 women; mean age 60 years), referred for an OCTREO scan for imaging of a neuroendocrine tumour (15), thymoma (1) or medullary thyroid carcinoma (1), agreed to undergo a second study with NOCATE. Whole-body anterior-posterior scans were recorded 0.5 (100 % reference scan), 4, 24 and 48 h (17 patients) and 120 h (5 patients) after injection. In 16 patients the OCTREO scan (178 ± 15 MBq) was performed 16 ± 5 days before the NOCATE scan (108 ± 14 MBq) with identical timing; 1 patient had the NOCATE scan before the OCTREO scan. Blood samples were obtained from 14 patients 5 min to 48 h after injection. Activities expressed as percent of the initial (reference) activity in the whole body, lung, kidney, liver, spleen and blood were fitted to biexponential or single exponential functions. Dosimetry was performed using OLINDA/EXM. RESULTS: Initial whole-body, lung and kidney activities were similar, but retention of NOCATE was higher than that of OCTREO. Liver and spleen uptakes of NOCATE were higher from the start (p < 0.001) and remained so over time. Whole-body activity showed similar α and β half-lives, but the β fraction of NOCATE was double that of OCTREO. Blood T (1/2)β for NOCATE was longer (19 vs. 6 h). As a result, the effective dose of NOCATE (105 μSv/MBq) exceeded that of OCTREO (52 μSv/MBq), and the latter result was similar to the ICRP 106 value of 54 μSv/MBq. Differential activity measurement in blood cells and plasma showed an average of <5 % of NOCATE and OCTREO attached to globular blood components. CONCLUSION: NOCATE showed a slower clearance from normal tissues and its effective dose was roughly double that of OCTREO.
Resumo:
Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.
Resumo:
Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.
Resumo:
It has been recently shown (Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, et al. 2006. J. Exp. Med. 203:1693-1700.) that the expression of interleukin (IL) 7 receptor (R) alpha discriminates between two distinct CD4 T cell populations, both characterized by the expression of CD25, i.e. CD4 regulatory T (T reg) cells and activated CD4 T cells. T reg cells express low levels of IL-7Ralpha, whereas activated CD4 T cells are characterized by the expression of IL-7Ralpha(high). We have investigated the distribution of these two CD4 T cell populations in 36 subjects after liver and kidney transplantation and in 45 healthy subjects. According to a previous study (Demirkiran, A., A. Kok, J. Kwekkeboom, H.J. Metselaar, H.W. Tilanus, and L.J. van der Laan. 2005. Transplant. Proc. 37:1194-1196.), we observed that the T reg CD25(+)CD45RO(+)IL-7Ralpha(low) cell population was reduced in transplant recipients (P < 0.00001). Interestingly, the CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population was significantly increased in stable transplant recipients compared with healthy subjects (P < 0.00001), and the expansion of this cell population was even greater in patients with documented humoral chronic rejection compared with stable transplant recipients (P < 0.0001). The expanded CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population contained allospecific CD4 T cells and secreted effector cytokines such as tumor necrosis factor alpha and interferon gamma, thus potentially contributing to the mechanisms of chronic rejection. More importantly, CD4(+)IL-7Ralpha(+)and CD25(+)IL-7Ralpha(+) cells were part of the T cell population infiltrating the allograft of patients with a documented diagnosis of chronic humoral rejection. These results indicate that the CD4(+)CD25(+)IL-7Ralpha(+) cell population may represent a valuable, sensitive, and specific marker to monitor allospecific CD4 T cell responses both in blood and in tissues after organ transplantation.
Resumo:
With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t½) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t½ of 6-8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called 'pseudo-irreversible' inhibitor of acetylcholinesterase and butyrylcholinesterase. The t½ of the drug is very short (1-2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t½ of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better clinical response to acetylcholinesterase inhibitors. However, confirmation studies in larger populations are necessary to establish evidence of which subgroups of patients will most likely benefit from anti-dementia drugs. The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of the four commonly used anti-dementia drugs and to give an overview on the current knowledge of pharmacogenetics in this field.
Resumo:
A 11 months old female infant from Portugal, free of family history, consults for apathy, weight loss, tachycardia, tachypnea, petechiae, pallor without icterus and hepatoslenomegaly. Seven months earlier, while being in Portugal, she presented a persistent bluish pimple on her buttock. Laboratory results showed anemia (35 g/l), leucopenia (3.3 G/l), thrombocytopenia (13 G/l), impaired coagulation (INR 1.4, PTT 41 sec.), hyponatremia (124 mmol/l), elevated CRP (139 mg/l), high ferritin (34.775 μg/l) and high triglycerides (5.22 mmol/l). After correction of vital parameters, a bone marrow aspiration and biopsy (BMB) revealed both the etiological diagnosis, namely a visceral leishmaniasis (VL) as well as one of its potential complications, the hemophagocytic syndrome (HS). Transfusions of whole blood, platelets and fresh frozen plasma were immediately started. Dexamethasone (10 mg/m2) and amphotericin B (3 mg/kg/day) have also been administrated. Visceral leishmaniasis is caused by a protozoan (Leishmania donovani) transmitted by the female sandfly. It is endemic in the Mediterranean basin (including France, Italy, Spain and Portugal), South America, sub-Saharan Africa as well as in India and Bangladesh. The parasite infects macrophages and, after several weeks of incubation, the disease occurs by affection of bloodlines (anemia, leucopenia, thrombocytopenia), hepatosplenomegaly, cachexia, gastrointestinal damage. The complications of the disease may lead to death. Liposomal amphotericin B is the currently recommended treatment. HS is caused by the proliferation and activation of macrophages in the marrow in response to a cytokine storm. It may be of primary cause. When it is secondary, it may be related to infections such as leishmaniasis. Patients present with fever and laboratory diagnostic criteria include cytopenia, hypertriglyceridemia, high ferritin and hemophagocytosis in the BMB. The treatment consists among other in the administration of high doses corticosteroids and, in secondary cases, in the treatment of the underlying cause. In conclusion, the clinical and biological features of VL may mimic haematological disorders as leukemia, but an enlargement of the liver and especially of the spleen should remind in this parasitic infection and its potential fatal complication, the HS.
Resumo:
Aims: Recently, several clinical trials analyzed if extended duration of treatment with pegylated interferon-alfa and ribavirin over 48 weeks can improve sustained virologic response (SVR) rates in HCV genotype 1-infected patients with slow virologic response. Because results of these clinical trials are conflicting, we performed a metaanalysis to determine the overall impact of extended treatment compared to standard treatment on virologic response rates in treatment-naive HCV genotype 1 slow responders. Methods: Literature search was performed independently by two observers using Pub Med, EMBASE, CENTRAL and abstracts presented in English at international liver and gastroenterology meetings. Randomized controlled clinical trials (RCTs; but studies that re-analyzed data retrospectively RCTs were also allowed) were considered if they included monoinfected treatment-naive HCV genotype 1 patients and compared treatment with pegIFN-alfa 2a or 2b in combination with ribavirin for 48 weeks versus extended treatment (up to 72 weeks) in slow responders. Primary and secondary end points were SVR rates and end-of-treatment (EOT) and relapse rates, respectively. In the present meta-analysis, study endpoints were summarized with a DerSimonian-Laird estimate for binary outcome basing on a random effects model. Results: Literature search yielded seven RTCs addressing the benefit of extended treatment with pegylated interferon-alfa and ribavirin in treatment-naive HCV genotype 1 slow responders. In total, 1330 slow responders were included in our meta-analysis. We show that extended treatment duration compared to the standard of care significantly improves SVR rates in HCV genotype 1 slow responders (12.4% improvement of overall SVR rate, 95% CI 0.055- 0.193, P = 0.0005). In addition, we show that rates of viral relapse were significantly reduced by extended treatment (24.1% reduction of relapse, 95% CI −0.3332 to −0.1487, P < 0.0001), whereas no significant impact of extended treatment on EOT response rates was found. Though extended treatment was burdened with an enhanced rate of premature treatment discontinuation due to interferonalfa- and ribavirin-related side effects, the frequency of serious adverse events was not increased. Conclusions: Treatment extension in HCV genotype 1 slow responders can improve SVR rates in difficult to treat patients and should be considered in patients who need to be treated before specific antivirals will be approved.
Resumo:
The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.
Resumo:
Background: Dehydroepiandrosterone (DHEA) released by adrenal glands may be converted to androgens and estrogens mainly in the gonadal, adipose, mammary, hepatic and nervous tissue. DHEA is also a key neurosteroid and has antiglucocorticoid activity. DHEA has been used for the treatment of a number of diseases, including obesity; its pharmacological effects depend on large oral doses, which effect rapidly wanes in part because of its short half-life in plasma. Since steroid hormone esters circulate for longer periods, we have studied here whether the administration of DHEA oleoyl ester may extend its pharmacologic availability by keeping high circulating levels. Results: Tritium-labelled oleoyl-DHEA was given to Wistar male and female rats by gastric tube. The kinetics of appearance of the label in plasma was unrelated to sex; the pattern being largely coincident with the levels of DHEA-sulfate only in females, and after 2 h undistinguishable from the results obtained using labelled DHEA gavages; in the short term, practically no lipophilic DHEA label was found in plasma. After 24 h only a small fraction of the label remained in the rat organs, with a different sex-related distribution pattern coincident for oleoyl- and free- DHEA gavages. The rapid conversion of oleoyl-DHEA into circulating DHEA-sulfate was investigated using stomach, liver and intestine homogenates; which hydrolysed oleoyl-DHEA optimally near pH 8. Duodenum and ileum contained the highest esterase activities. Pure hog pancreas cholesterol-esterase broke down oleoyl-DHEA at rates similar to those of oleoyl-cholesterol. The intestinal and liver esterases were differently activated by taurocholate and showed different pH-activity patterns than cholesterol esterase, suggesting that oleoyl-DHEA can be hydrolysed by a number of esterases in the lumen (e.g. cholesterol-esterase), in the intestinal wall and the liver. Conclusion: The esterase activities found may condition the pharmacological availability (and depot effect) of orally administered steroid hormone fatty acid esters such as oleoyl-DHEA. The oral administration of oleoyl-DHEA in order to extend DHEA plasma availability has not been proved effective, since the ester is rapidly hydrolysed, probably in the intestine itself, and mainly converted to DHEA-sulfate at least in females.
Resumo:
Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.
Resumo:
In adult, bone remodeling is a permanent process, reaching an annual turnover of about 10% of the skeleton. Bone remodeling requires the sequential and coordinated actions of the hematopoietic origin osteoclasts, to remove bone and the mesenchymal origin osteoblasts to replace it. An increased level of bone resorption is the primary cause of age-related bone loss often resulting in osteopenia, and is the major cause of osteoporosis.¦Peroxisome proliferator-activated receptors (PPARs), which are expressed in three isotypes, PPARa, PPARp and PPARy, are ligand-activated transcription factors that control many cellular and metabolic processes, more particularly linked to lipid metabolism. In bone, previous works has shown that PPARy inhibits osteogenesis by favoring adipogenesis from common mesenchymal progenitors. In addition, the pro-osteoclastogenesis activity of PPARy results in an increased bone resorption. Accordingly, treatment with PPARy agonist such as the anti-diabetic drug TZD causes bone loss and accumulation of marrow adiposity in mice as well as in postmenopausal women. The aim of the present thesis work was to elucidate the PPARs functions in bone physiology.¦The initial characterization of the PPARP" bone phenotype mainly revealed a decreased BMD. In vitro studies exploring the potency of mesenchymal stem cells to differentiate in osteoblast showed no differences depending on the genotype. However, we could demonstrate an effect of PPARp in partially inhibiting osteoclastogenesis. These results are further sustained by a study made in collaboration with the group of Dr Kronke, which showed an impressive protection against ovariectomy-generated bone loss when the females are treated with a PPARp agonist.¦Observations in PPARy null mice are more complex. The lab has recently been able to generate mice carrying a total deletion of PPARy. Intriguingly, the exploration of the bone phenotype of these mice revealed paradoxical findings. Whereas short bones such as vertebrae exhibit an elevated BMD as expected, long bones (tibia and femur) are clearly osteoporotic. According to their activity when set in culture, osteoblast differentiation normally occurs. Indeed the phenotype can be mainly attributed to a high density of osteoclasts in the cortical bone of PPARy null mice, associated to large bone resorption areas.¦Our explorations suggest a mechanism that involves regulatory processes linking osteoclastogenesis to adipogenesis, the latter being totally absent in PPARy null mice. Indeed, the lack of adipose tissue creates a favorable niche for osteoclastogenesis since conditioned medium made from differentiated adipocyte 3T3L1 inhibited osteoclastogenesis from both PPARy-/- and WT cells. Thus, adipokines deficiency in PPARy-/- mice contributes to de- repress osteoclastogenesis. Using specific blocking antibody, we further identified adiponectin as the major player among dozens of adipokines. Using flow cytometry assay, we explored the levels at which the osteoclastic commitment was perturbed in the bone marrow of PPARy-/- mice. Intriguingly, we observe a general decrease for hematopoietic stem cell and lineage progenitors but increased proportion of osteoclast progenitor in PPARy-/- bone marrow. The general decrease of HSC in the bone marrow is however largely compensated by an important extra-medullary hematopoeisis, taking place in the liver and in the spleen.¦These specific characteristics emphasize the key role of PPARy on a cross road of osteogenesis, adipogenesis and hematopoiesis/osteoclastogenesis. They underline the complexity of the bone marrow niche, and demonstrate the inter-dependance of different cell types in defining bone homeostasis, that may be overseen when experimental design single out pure cell populations.¦Chez l'adulte, même après la fin de la croissance, le renouvellement des os se poursuit et porte sur environ 10% de l'ensemble du squelette adulte, par année. Ce renouvellement implique à la fois des mécanismes séquentiels et coordonnés des ostéoclastes d'origine hématopoïetique, qui dégradent l'os, et des ostéoblastes d'origine mésenchymale, qui permettent la régénération de l'os. La perte en densité osseuse due à l'âge entraîne un fort niveau de résorption, conduisant souvent à une ostéopénie, elle-même cause de l'ostéoporose.¦Les trois isotypes PPAR (Peroxisome proliferator-activated receptor, PPARa, PPARp, et PPARy) sont des récepteurs nucléaires qui contrôlent de nombreux mécanismes cellulaires et métaboliques, plus particulièrement liés au métabolisme lipidique. Au niveau osseux, des travaux précédents ont montré que PPARy inhibe l'ostéoblastogenèse en favorisant la formation d'adipocytes à partir de la cellule progénitrice commune. De plus, l'activité pro- ostéoclastogénique de PPARy induit une résorption osseuse accrue. Condormément à ces observations, les patients diabétiques traités par les thiazolidinediones qui agissent sur PPARy, ont un risque accrue d'ostéoporose liée à une perte osseuse accrue et un accroissement de l'adiposité au niveau de la moelle osseuse. Dans ce contexte, l'objectif de mon travail de thèse a été d'élucider le rôle des PPAR dans la physiologie osseuse, en s'appuyant sur le phénotype des souris porteuses de mutation pour PPAR.¦La caractérisation initiale des os des souris porteuses d'une délétion de ΡΡΑΕφ a principalement révélé une diminution de la densité minérale osseuse (DMO). Alors que l'ostéogenèse n'est pas significativement altérée chez ces souris, l'ostéoclastogenèse est elle augmentée, suggérant un rôle modérateur de ce processus par ΡΡΑΕΙβ. Ces résultats sont par ailleurs soutenus par une étude menée par le groupe du Dr Krônke en collaboration avec notre groupe, et qui monte une protection très importante des souris traitées par un activateur de PPARP contre l'ostéoporose provoquée par l'ovariectomie.¦Les observations concernant PPARy donnent des résultats plus complexes. Le laboratoire a en effet été capable récemment de générer des souris portant une délétion totale de PPARy. Alors que les os courts chez ces souris présentent une augmentation de la DMO, comme attendu, les os longs sont clairement ostéoporotiques. Ce phénotype corrèle avec une densité élevée d'ostéoclastes dans l'os cortical de ces os longs. Deux processus semblent contribuer à ce phénotype. En premier lieu, nous démontrons qu'un milieu conditionné provenant de cultures de cellules 3T3-L1 différenciées en adipocytes contiennent une forte activité inhibitrice d'osteoclastogenesis. L'utilisation d'anticorps neutralisant permet d'identifier l'adiponectine comme l'un des facteurs principaux de cette inhibition. Les souris PPARy étant totalement dépourvues d'adipocytes et donc de tissu adipeux, la sécrétion locale d'adiponectine dans la moelle osseuse est donc également absente, entraînant une désinhibition de l'ostéoclastogenèse. En second lieu, des analyses par FACS révèle une proportion accrue des cellules progénitrices d'ostéoclastes dans la moelle osseuse. Cela s'accompagne par une diminution globale des cellules souches hématopoïétiques, qui est cependant largement compensée par une importante hématopoëise extra-médullaire, dans le foie comme dans la rate.¦L'ensemble de notre travail montre toute l'importance de PPARy au carrefour de l'ostéogenèse, adipogenèse, et hématopoëise/osteoclastogenèse. Il souligne la complexité de la niche que représente la moelle osseuse et démontre l'inter-dépendance des différents types cellulaires définissant l'homéostasie osseuse, complexité qui peut facilement être masqué lorsque le travail expérimental se concentre sur le comportement d'un type cellulaire donné.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that can be activated by fatty acids and peroxisome proliferators. The PPAR alpha subtype mediates the pleiotropic effects of these activators in liver and regulates several target genes involved in fatty acid catabolism. In primary hepatocytes cultured in vitro, the PPAR alpha gene is regulated at the transcriptional level by glucocorticoids. We investigated if this hormonal regulation also occurs in the whole animal in physiological situations leading to increased plasma corticosterone levels in rats. We show here that an immobilization stress is a potent and rapid stimulator of PPAR alpha expression in liver but not in hippocampus. The injection of the synthetic glucocorticoid dexamethasone into adult rats produces a similar increase in PPAR alpha expression in liver, whereas the administration of the antiglucocorticoid RU 486 inhibits the stress-dependent stimulation. We conclude that glucocorticoids are major mediators of the stress response. Consistent with this hormonal regulation, hepatic PPAR alpha mRNA and protein levels follow a diurnal rhythm, which parallels that of circulating corticosterone. To test the effects of variations in PPAR alpha expression on PPAR alpha target gene activity, high glucocorticoid-dependent PPAR alpha expression was mimicked in cultured primary hepatocytes. Under these conditions, hormonal stimulation of receptor expression synergizes with receptor activation by WY-14,643 to induce the expression of the PPAR alpha target gene acyl-CoA oxidase. Together, these results show that regulation of the PPAR alpha expression levels efficiently modulates PPAR activator signaling and thus may affect downstream metabolic pathways involved in lipid homeostasis.
Resumo:
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.