974 resultados para Linear semi-infinite optimization
Resumo:
O transformador de potência é um importante equipamento utilizado no sistema elétrico de potência, responsável por transmitir energia elétrica ou potência elétrica de um circuito a outro e transformar tensões e correntes de um circuito elétrico. O transformador de potência tem ampla aplicação, podendo ser utilizado em subestações de usinas de geração, transmissão e distribuição. Neste sentido, mudanças recentes ocorridas no sistema elétrico brasileiro, causadas principalmente pelo aumento considerável de carga e pelo desenvolvimento tecnológico tem proporcionado a fabricação de um transformador com a aplicação de alta tecnologia, aumentando a confiabilidade deste equipamento e, em paralelo, a redução do seu custo global. Tradicionalmente, os transformadores são fabricados com um sistema de isolação que associa isolantes sólidos e celulose, ambos, imersos em óleo mineral isolante, constituição esta que define um limite à temperatura operacional contínua. No entanto, ao se substituir este sistema de isolação formado por papel celulose e óleo mineral isolante por um sistema de isolação semi- híbrida - aplicação de papel NOMEX e óleo vegetal isolante, a capacidade de carga do transformador pode ser aumentada por suportar maiores temperaturas. Desta forma, o envelhecimento do sistema de isolação poderá ser em longo prazo, significativamente reduzido. Esta técnica de aumentar os limites térmicos do transformador pode eliminar, essencialmente, as restrições térmicas associadas à isolação celulósica, provendo uma solução econômica para aperfeiçoar o uso de transformadores de potência, aumentando a sua confiabilidade operacional. Adicionalmente, à aplicação de sensores de fibra óptica, em substituição aos sensores de imagem térmica no monitoramento das temperaturas internas do transformador, se apresentam como importante opção na definição do equacionamento do comportamento do transformador sob o ponto de vista térmico.
Resumo:
O presente estudo considera a aplicação do modelo SISAGUA de simulação matemática e de otimização para a operação de sistemas de reservatórios integrados em sistemas complexos para o abastecimento de água. O SISAGUA utiliza a programação não linear inteira mista (PNLIM) com os objetivos de evitar ou minimizar racionamentos, equilibrar a distribuição dos armazenamentos em sistemas com múltiplos reservatórios e minimizar os custos de operação. A metodologia de otimização foi aplicada para o sistema produtor de água da Região Metropolitana de São Paulo (RMSP), que enfrenta a crise hídrica diante de um cenário de estiagem em 2013-2015, o pior na série histórica dos últimos 85 anos. Trata-se de uma região com 20,4 milhões de habitantes. O sistema é formado por oito sistemas produtores parcialmente integrados e operados pela Sabesp (Companhia de Saneamento do Estado de São Paulo). A RMSP é uma região com alta densidade demográfica, localizada na Bacia Hidrográfica do Alto Tietê e caracterizada pela baixa disponibilidade hídrica per capita. Foi abordada a possibilidade de considerar a evaporação durante as simulações, e a aplicação de uma regra de racionamento contínua nos reservatórios, que transforma a formulação do problema em programação não linear (PNL). A evaporação se mostrou pouco representativa em relação a vazão de atendimento à demanda, com cerca de 1% da vazão. Se por um lado uma vazão desta magnitude pode contribuir em um cenário crítico, por outro essa ordem de grandeza pode ser comparada às incertezas de medições ou previsões de afluências. O teste de sensibilidade das diferentes taxas de racionamento em função do volume armazenado permite analisar o tempo de resposta de cada sistema. A variação do tempo de recuperação, porém, não se mostrou muito significativo.
Resumo:
Mediante a crescente necessidade de aumento na oferta de energia elétrica devido à constante elevação na demanda mundial, esta dissertação avalia o desempenho de um sistema conversor de energia de ondas marítimas em energia elétrica. O sistema em análise é o de coluna de água oscilante com turbina de dupla ação instalado na costa. Utiliza-se um modelo regular de ondas como perturbação à dinâmica de uma câmara semi-submersa gerando fluxo de ar através de uma turbina à ar de dupla ação. O sistema final é não linear e com parâmetros variantes no tempo. A dissertação investiga possibilidades para o aumento do rendimento da turbina em diferentes condições de mar através do método de simulação numérica. Após a modelagem física e matemática do sistema escolhido, inicia-se a síntese de um controlador proporcional derivativo para controle da pressão de ar na turbina em torno da pressão ideal de trabalho da mesma. A análise inclui o comparativo entre os resultados do sistema com e sem controlador e a avaliação de robustez utilizando ondas com amplitude variável. O trabalho apresenta ainda propostas de otimização do sistema para trabalhar em condições similares a região de Pecém no Brasil. Pelos resultados obtidos nas simulações, conclui-se que o rendimento e a robustez do sistema podem melhorar utilizando um sistema controlado. O rendimento do sistema poderá ainda ser otimizado para a região de instalação.
Resumo:
This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.
Resumo:
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.
Resumo:
This paper deals with stability properties of the feasible set of linear inequality systems having a finite number of variables and an arbitrary number of constraints. Several types of perturbations preserving consistency are considered, affecting respectively, all of the data, the left-hand side data, or the right-hand side coefficients.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.
Resumo:
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.
Resumo:
Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the general public. For the resolution of the problem we employed a hybrid simulation- optimization methodology, i.e., the superstructure of the process was developed directly in a chemical process simulator connected to a state of the art optimizer. The model was formulated as a GDP and solved using a logic algorithm that avoids the reformulation as MINLP -Mixed Integer Non Linear Programming-. Our research gave us Pareto curves compounded by three different configurations where the LCA has been assessed by two different parameters: global warming potential and ecoindicator-99.
Resumo:
In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we investigate the effects of potential models on the description of equilibria of linear molecules (ethylene and ethane) adsorption on graphitized thermal carbon black. GCMC simulation is used as a tool to give adsorption isotherms, isosteric heat of adsorption and the microscopic configurations of these molecules. At the heart of the GCMC are the potential models, describing fluid-fluid interaction and solid-fluid interaction. Here we studied the two potential models recently proposed in the literature, the UA-TraPPE and AUA4. Their impact in the description of adsorption behavior of pure components will be discussed. Mixtures of these components with nitrogen and argon are also studied. Nitrogen is modeled a two-site plus discrete charges while argon as a spherical particle. GCMC simulation is also used for generating simulation mixture isotherms. It is found that co-operation between species occurs when the surface is fractionally covered while competition is important when surface is fully loaded.