767 resultados para Learning Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aims to investigate the constructs of Technological Readiness Index (TRI) and the Expectancy Disconfirmation Theory (EDT) as determinants of satisfaction and continuance intention use in e-learning services. Is proposed a theoretical model that seeks to measure the phenomenon suited to the needs of public organizations that offer distance learning course with the use of virtual platforms for employees. The research was conducted from a quantitative analytical approach, via online survey in a sample of 343 employees of 2 public organizations in RN who have had e-learning experience. The strategy of data analysis used multivariate analysis techniques, including structural equation modeling (SEM), operationalized by AMOS© software. The results showed that quality, quality disconfirmation, value and value disconfirmation positively impact on satisfaction, as well as disconfirmation usability, innovativeness and optimism. Likewise, satisfaction proved to be decisive for the purpose of continuance intention use. In addition, technological readiness and performance are strongly related. Based on the structural model found by the study, public organizations can implement e-learning services for employees focusing on improving learning and improving skills practiced in the organizational environment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-learning, which refers to the use of Internet-related technologies to improve knowledge and learning, has emerged as a complementary form of education, bringing advantages such as increased accessibility to information, personalized learning, democratization of education and ease of update, distribution and standardization of the content. In this sense, this paper aims to develop a tool, named ISE-SPL, whose purpose is the automatic generation of E-learning systems for medical education, making use of concepts of Software Product Lines. It consists of an innovative methodology for medical education that aims to assist professors of healthcare in their teaching through the use of educational technologies, all based on computing applied to healthcare (Informatics in Health). The tests performed to validate the ISE-SPL were divided into two stages: the first was made by using a software analysis tool similar to ISE-SPL, called SPLOT and the second was performed through usability questionnaires to healthcare professors who used ISESPL. Both tests showed positive results, proving it to be an efficient tool for generation of E-learning software and useful for professors in healthcare

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to demonstrate that data from business games can be an important resource for improving efficiency and effectiveness of learning. The proposal presented here was developed from preliminary studies of data from Virtual Market games that pointed the possibility of identifying gaps in learning by analyzing the decisions of students. This proposal helps students to refine their learning processes and equips tutors with strategies for teaching and student assessment. The proposal also complements the group discussion and/or debriefing, which are widely used to enhance learning mediated by games. However, from a management perspective the model has the potential to be erroneous and miss opportunities, which cannot be detected because of the dependence on the characteristics of the individual, such as ability to communicate and work together. To illustrate the proposed technique, data sets from two business games were analyzed with the focus on managing working capital and it was found that students had difficulties managing this task. Similar trends were observed in all categories of students in the study-undergraduate, postgraduate and specialization. This discovery led us to the analysis of data for decisions made in the performance of the games, and it was determined that indicators could be developed that were capable of indentifying inconsistencies in the decisions. It was decided to apply some basic concepts of the finance management, such as management of the operational and non-operational expenditures, as well as production management concepts, such as the use of the production capacity. By analyzing the data from the Virtual Market games using the indicator concept, it was possible to detect the lack of domain knowledge of the students. Therefore, these indicators can be used to analyze the decisions of the players and guide them during the game, increasing their effectiveness and efficiency. As these indicators were developed from specific content, they can also be used to develop teaching materials to support learning. Viewed in this light, the proposal adds new possibilities for using business games in learning. In addition to the intrinsic learning that is achieved through playing the games, they also assist in driving the learning process. This study considers the applications and the methodology used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A clinical study of Brazilian patients with neurofibromatosis type 1 (NF1) was performed in a multidisciplinary Neurofibromatosis Program called CEPAN (Center of Research and Service in Neurofibromatosis). Among 55 patients (60% females, 40% males) who met the NIH criteria for the diagnosis of NF1, 98% had more than six café-au-lait patches, 94.5% had axillary freckling, 45% had inguinal freckling, and 87.5% had Lisch nodules. Cutaneous neurofibromas were observed in 96%, and 40% presented plexiform neurofibromas. A positive family history of NF1 was found in 60%, and mental retardation occurred in 35%. Some degree of scoliosis was noted in 49%, 51% had macrocephaly, 40% had short stature, 76% had learning difficulties, and 2% had optic gliomas. Unexpectedly high frequencies of plexiform neurofibromas, mental retardation, learning difficulties, and scoliosis were observed, probably reflecting the detailed clinical analysis methods adopted by the Neurofibromatosis Program. These same patients were screened for mutations in the GAP-related domain/GRD (exons 20-27a) by single-strand conformation polymorphism. Four different mutations (Q1189X, 3525-3526delAA, E1356G, c.4111-1G>A) and four polymorphisms (c.3315-27G>A, V1146I, V1317A, c.4514+11C>G) were identified. These data were recently published.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First graders, preschoolers, special education students, and adults received a reading program in which they learned to match printed to dictated words and to construct (copy) printed words. The students not only learned to match the training words but also learned to read them. In addition, most of the students learned to read new words that involved recombinations of the syllables of the training words. The results replicate and extend the generality of a prior analysis of a reading program based on stimulus equivalence and recombination of units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards (postlingual) were studied. All children learned auditory-visual conditional discriminations and nearly all showed emergent equivalence relations. Naming tests, conducted with a subset of the: children, showed no consistent relationship to the equivalence-test outcomes.. This study makes several contributions: to the literature on stimulus equivalence. First; it demonstrates that both pre- and postlingually deaf children-can: acquire auditory-visual equivalence-relations after cochlear implantation, thus demonstrating symbolic functioning. Second, it directs attention to a population that may be especially interesting for researchers seeking to analyze the relationship. between speaker and listener repertoires. Third, it demonstrates the feasibility of conducting experimental studies of stimulus control processes within the limitations of a hospital, which these children must visit routinely for the maintenance of their cochlear implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enhance the global search ability of Population Based Incremental Learning (PBIL) methods, It Is proposed that multiple probability vectors are to be Included on available PBIL algorithms. As a result, the strategy for updating those probability vectors and the negative learning and mutation operators are redefined as reported. Numerical examples are reported to demonstrate the pros and cons of the newly Implemented algorithm. ©2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that the total amount of losses in a distribution system is known, with a reliable methodology for the technical loss calculation, the non-technical losses can be obtained by subtraction. A usual method of calculation technical losses in the electric utilities uses two important factors: load factor and the loss factor. The load factor is usually obtained with energy and demand measurements, whereas, to compute the loss factor it is necessary the learning of demand and energy loss, which are not, in general, prone of direct measurements. In this work, a statistical analysis of this relationship using the curves of a sampling of consumers in a specific company is presented. These curves will be summarized in different bands of coefficient k. Then, it will be possible determine where each group of consumer has its major concentration of points. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital data sets constitute rich sources of information, which can be extracted and evaluated applying computational tools, for example, those ones for Information Visualization. Web-based applications, such as social network environments, forums and virtual environments for Distance Learning, are good examples for such sources. The great amount of data has direct impact on processing and analysis tasks. This paper presents the computational tool Mapper, defined and implemented to use visual representations - maps, graphics and diagrams - for supporting the decision making process by analyzing data stored in Virtual Learning Environment TelEduc-Unesp. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.