965 resultados para LYMPHOCYTE DEPLETION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

inor actinides (MAs) transmutation is a main design objective of advanced nuclear systems such as generation IV Sodium Fast Reactors (SFRs). In advanced fuel cycles, MA contents in final high level waste packages are main contributors to short term heat production as well as to long-term radiotoxicity. Therefore, MA transmutation would have an impact on repository designs and would reduce the environment burden of nuclear energy. In order to predict such consequences Monte Carlo (MC) transport codes are used in reactor design tasks and they are important complements and references for routinely used deterministic computational tools. In this paper two promising Monte Carlo transport-coupled depletion codes, EVOLCODE and SERPENT, are used to examine the impact of MA burning strategies in a SFR core, 3600 MWth. The core concept proposal for MA loading in two configurations is the result of an optimization effort upon a preliminary reference design to reduce the reactivity insertion as a consequence of sodium voiding, one of the main concerns of this technology. The objective of this paper is double. Firstly, efficiencies of the two core configurations for MA transmutation are addressed and evaluated in terms of actinides mass changes and reactivity coefficients. Results are compared with those without MA loading. Secondly, a comparison of the two codes is provided. The discrepancies in the results are quantified and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UPM Activities on Sensitivity and Uncertainty Analysis of Assembly Depletion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propagation of nuclear data uncertainties in reactor calculations is interesting for design purposes and libraries evaluation. Previous versions of the GRS XSUSA library propagated only neutron cross section uncertainties. We have extended XSUSA uncertainty assessment capabilities by including propagation of fission yields and decay data uncertainties due to the their relevance in depletion simulations. We apply this extended methodology to the UAM6 PWR Pin-Cell Burnup Benchmark, which involves uncertainty propagation through burnup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in excitable cells often acts as a negative feedback signal on firing of action potentials and the associated voltage-gated Ca2+ influx. Increased [Ca2+]i stimulates Ca2+-sensitive K+ channels (IK-Ca), and this, in turn, hyperpolarizes the cell and inhibits Ca2+ influx. However, in some cells expressing IK-Ca the elevation in [Ca2+]i by depletion of intracellular stores facilitates voltage-gated Ca2+ influx. This phenomenon was studied in hypothalamic GT1 neuronal cells during store depletion caused by activation of gonadotropin-releasing hormone (GnRH) receptors and inhibition of endoplasmic reticulum (Ca2+)ATPase with thapsigargin. GnRH induced a rapid spike increase in [Ca2+]i accompanied by transient hyperpolarization, followed by a sustained [Ca2+]i plateau during which the depolarized cells fired with higher frequency. The transient hyperpolarization was caused by the initial spike in [Ca2+]i and was mediated by apamin-sensitive IK-Ca channels, which also were operative during the subsequent depolarization phase. Agonist-induced depolarization and increased firing were independent of [Ca2+]i and were not mediated by inhibition of K+ current, but by facilitation of a voltage-insensitive, Ca2+-conducting inward current. Store depletion by thapsigargin also activated this inward depolarizing current and increased the firing frequency. Thus, the pattern of firing in GT1 neurons is regulated coordinately by apamin-sensitive SK current and store depletion-activated Ca2+ current. This dual control of pacemaker activity facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process may also provide a general mechanism for the integration of voltage-gated Ca2+ influx into receptor-controlled Ca2+ mobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative deficiency of T helper type 1 (Th1) and cytotoxic T lymphocyte (CTL) responses in early life is associated with an increased susceptibility to infections by intracellular microorganisms. This is likely to reflect a preferential polarization of immature CD4 T cells toward a Th2 rather than a Th1 pattern upon immunization with conventional vaccines. In this report, it is shown that a single immunization within the first week of life with DNA plasmids encoding viral (measles virus hemagglutinin, Sendai virus nucleoprotein) or bacterial (C fragment of tetanus toxin) vaccine antigens can induce adult-like Th1 or mixed Th1/Th2 responses indicated by production of IgG2a vaccine-specific antibodies and preferential secretion of interferon-γ (IFN-γ) compared with interleukin (IL)-5 by antigen-specific T cells, as well as significant CTL responses. However, in spite of this potent Th1-driving capacity, subsequent DNA immunization was not capable of reverting the Th2-biased responses induced after early priming with a recombinant measles canarypox vector. Thus, DNA vaccination represents a novel strategy capable of inducing Th1 or mixed Th1/Th2 and CTL responses in neonates and early life, providing it is performed prior to exposure to Th2-driving conventional vaccine antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the four subtypes of Hodgkin disease (HD), lymphocyte-predominant (LP) HD is now generally considered as a separate entity. The B cell nature of the typical Hodgkin and Reed–Sternberg (HRS) cells and their variants (L and H, lymphocytic and histiocytic cells) in LP HD has long been suspected, but the question of whether these cells represent a true tumor clone is unclear. We previously demonstrated clonal Ig gene rearrangements in one case of LP HD. In the present study, five cases of LP HD were analyzed by micromanipulation of single HRS cells from frozen tissue sections and DNA amplification of rearranged Ig heavy chain genes from those cells. Clonal V gene rearrangements harboring somatic mutations were detected in each case. In three cases ongoing somatic mutation was evident. This shows that HRS cells in LP HD are a clonal tumor population derived from germinal center B cells. The pattern of somatic mutation indicates that HRS cells in LP HD are selected for antibody expression. This, and the presence of ongoing mutation discriminates LP from classical HD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms underlying the varied susceptibility of HIV-infected (HIV+) individuals to opportunistic infections (OI) are still incompletely understood. One hypothesis is that quantitative differences in specific T cell responses to a colonizing organism determine the development of an AIDS-defining OI. We evaluated this hypothesis for herpes simplex virus (HSV) infection, a common OI in HIV+ patients. Using limiting dilution analyses, the frequency of HSV-specific CD8+ cytotoxic T lymphocyte precursors (pCTL) and proliferative precursors were quantitated in peripheral blood mononuclear cells from 20 patients coinfected with HIV and HSV-2. The frequency of HSV-specific CD8+ pCTL in HSV+HIV+ individuals was significantly lower than in HSV+HIV− individuals (1 in 77,000 vs. 1 in 6,000, P = .0005) and was not different than in HSV-HIV− individuals (1 in 100,000, P = .24). HIV+ patients who suffered more severe genital herpes recurrences had significantly lower HSV-specific CD8+ pCTL frequencies than those patients with mild recurrences (1 in 170,000 vs. 1 in 26,000, P = .03). In contrast, no significant difference was seen in proliferative precursor frequencies between those patients with mild vs. severe genital herpes (1 in 3,800 vs. 1 in 6,600, P > .5). Quantitative differences in pCTL frequency to HSV appear to be the most important host factor influencing the frequency and severity of HSV reactivation in HIV+ patients. Studies to reconstitute such immunity, especially in people with acyclovir-resistant HSV, appear warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current studies explore the mechanism by which the sphingomyelin content of mammalian cells regulates transcription of genes encoding enzymes of cholesterol synthesis. Previous studies by others have shown that depletion of sphingomyelin by treatment with neutral sphingomyelinase causes a fraction of cellular cholesterol to translocate from the plasma membrane to the endoplasmic reticulum where it expands a regulatory pool that leads to down-regulation of cholesterol synthesis and up-regulation of cholesterol esterification. Here we show that sphingomyelinase treatment of cultured Chinese hamster ovary cells prevents the nuclear entry of sterol regulatory element binding protein-2 (SREBP-2), a membrane-bound transcription factor required for transcription of several genes involved in the biosynthesis and uptake of cholesterol. Nuclear entry is blocked because sphingomyelinase treatment inhibits the proteolytic cleavage of SREBP-2 at site 1, thereby preventing release of the active NH2-terminal fragments from cell membranes. Sphingomyelinase treatment thus mimics the inhibitory effect on SREBP processing that occurs when exogenous sterols are added to cells. Sphingomyelinase treatment did not block site 1 proteolysis of SREBP-2 in 25-RA cells, a line of Chinese hamster ovary cells that is resistant to the suppressive effects of sterols, owing to an activating point mutation in the gene encoding SREBP cleavage-activating protein. In 25-RA cells, sphingomyelinase treatment also failed to down-regulate the mRNA for 3-hydroxy-3-methylglutaryl CoA synthase, a cholesterol biosynthetic enzyme whose transcription depends on the cleavage of SREBPs. Considered together with previous data, the current results indicate that cells regulate the balance between cholesterol and sphingomyelin content by regulating the proteolytic cleavage of SREBPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the myc family of nuclear protooncogenes play roles in cell proliferation, differentiation, and apoptosis. Moreover, inappropriate expression of c-myc genes contributes to the development of many types of cancers, including B cell lymphomas in humans. Although Myc proteins have been shown to function as transcription factors, their immediate effects on the cell have not been well defined. Here we have utilized a murine model of lymphomagenesis (Eμ-myc mice) to show that constitutive expression of a c-myc transgene under control of the Ig heavy-chain enhancer (Eμ) results in an increase in cell size of normal pretransformed B lymphocytes at all stages of B cell development. Furthermore, we show that c-Myc-induced growth occurs independently of cell cycle phase and correlates with an increase in protein synthesis. These results suggest that Myc may normally function by coordinating expression of growth-related genes in response to mitogenic signals. Deregulated c-myc expression may predispose to cancer by enhancing cell growth to levels required for unrestrained cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium influx through store-operated calcium release-activated calcium channels (CRAC) is required for T cell activation, cytokine synthesis, and proliferation. The CD95 (Apo-1/Fas) receptor plays a role in self-tolerance and tumor immune escape, and it mediates apoptosis in activated T cells. In this paper we show that CD95-stimulation blocks CRAC and Ca2+ influx in lymphocytes through the activation of acidic sphingomyelinase (ASM) and ceramide release. The block of Ca2+ entry is lacking in CD95-defective lpr lymphocytes as well as in ASM-defective cells and can be restored by retransfection of ASM. C2 ceramide, C6 ceramide, and sphingosine block CRAC reversibly, whereas the inactive dihydroceramide has no effect. CD95-stimulation or the addition of ceramide prevents store-operated Ca2+ influx, activation of the transcriptional regulator NFAT, and IL-2 synthesis. The block of CRAC by sphingomyelinase metabolites adds a function to the repertoire of the CD95 receptor inhibiting T cell activation signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptotic and necrotic cell death are well characterized and are influenced by intracellular ATP levels. Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by DNA strand breaks, physiologically participates in DNA repair. Overactivation of PARP after cellular insults can lead to cell death caused by depletion of the enzyme’s substrate β-nicotinamide adenine dinucleotide and of ATP. In this study, we have differentially elicited apoptosis or necrosis in mouse fibroblasts. Fibroblasts from PARP-deficient (PARP−/−) mice are protected from necrotic cell death and ATP depletion but not from apoptotic death. These findings, together with cell death patterns in PARP−/− animals receiving other types of insults, indicate that PARP activation is an active trigger of necrosis, whereas other mechanisms mediate apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B cell development and humoral immune responses are controlled by signaling thresholds established through the B lymphocyte antigen receptor (BCR) complex. BCR signaling thresholds are differentially regulated by the CD22 and CD19 cell surface receptors in vivo. B cells from CD22-deficient mice exhibit characteristics of chronic stimulation and are hyper-responsive to BCR crosslinking with augmented intracellular Ca2+ responses. By contrast, B cells from CD19-deficient mice are hypo-responsive to transmembrane signals. To identify signaling molecules involved in the positive and negative regulation of signaling thresholds, the signal transduction pathways activated after BCR crosslinking were examined in CD22- and CD19-deficient B cells. These comparisons revealed that tyrosine phosphorylation of Vav protein was uniquely augmented after BCR or CD19 crosslinking in CD22-deficient B cells, yet was modest and transient after BCR crosslinking in CD19-deficient B cells. Ligation of CD19 and CD22 in vivo is likely to positively and negatively regulate BCR signaling, respectively, because CD19 crosslinking was more efficient than BCR crosslinking at inducing Vav phosphorylation. However, simultaneous crosslinking of CD19 with the BCR resulted in a substantial decrease in Vav phosphorylation when CD22 was expressed. Thus, the differential regulation of Vav tyrosine phosphorylation by CD19 and CD22 may provide a molecular mechanism for adjusting BCR signaling thresholds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of the obese gene produces obesity, hyperinsulinemia, and compensatory “overexpression” of the defective gene. As insulin activates obese gene expression, it seemed possible that hyperinsulinemia might be responsible for overexpression of the gene. To address this question we rapidly neutralized circulating insulin by injection of an insulin antibody. Unexpectedly, insulin depletion in obese (ob/ob or db/db) mice caused massive adipose RNA degradation confirmed by histological analysis to result from adipocyte cell death by a largely necrotic mechanism. This effect was not observed in lean littermates and was completely corrected by coadministration of insulin. Comparison of multiple tissues demonstrated that the effect was restricted to adipose tissue. Insulin depletion in obese mice by administration of streptozotocin also led to cell death, but this death was less extensive and appeared to be apoptotic in mechanism. Thus insulin may promote the survival side of the physiological balance between adipocyte survival and death.