955 resultados para LANDSAT satellite
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
The elucidation of spatial variation in the landscape can indicate potential wildlife habitats or breeding sites for vectors, such as ticks or mosquitoes, which cause a range of diseases. Information from remotely sensed data could aid the delineation of vegetation distribution on the ground in areas where local knowledge is limited. The data from digital images are often difficult to interpret because of pixel-to-pixel variation, that is, noise, and complex variation at more than one spatial scale. Landsat Thematic Mapper Plus (ETM+) and Satellite Pour l'Observation de La Terre (SPOT) image data were analyzed for an area close to Douna in Mali, West Africa. The variograms of the normalized difference vegetation index (NDVI) from both types of image data were nested. The parameters of the nested variogram function from the Landsat ETM+ data were used to design the sampling for a ground survey of soil and vegetation data. Variograms of the soil and vegetation data showed that their variation was anisotropic and their scales of variation were similar to those of NDVI from the SPOT data. The short- and long-range components of variation in the SPOT data were filtered out separately by factorial kriging. The map of the short-range component appears to represent the patterns of vegetation and associated shallow slopes and drainage channels of the tiger bush system. The map of the long-range component also appeared to relate to broader patterns in the tiger bush and to gentle undulations in the topography. The results suggest that the types of image data analyzed in this study could be used to identify areas with more moisture in semiarid regions that could support wildlife and also be potential vector breeding sites.
Resumo:
The beds of active ice streams in Greenland and Antarctica are largely inaccessible, hindering a full understanding of the processes that initiate, sustain and inhibit fast ice flow in ice sheets. Detailed mapping of the glacial geomorphology of palaeo-ice stream tracks is, therefore, a valuable tool for exploring the basal processes that control their behaviour. In this paper we present a map that shows detailed glacial geomorphology from a part of the Dubawnt Lake Palaeo-Ice Stream bed on the north-western Canadian Shield (Northwest Territories), which operated at the end of the last glacial cycle. The map (centred on 63 degrees 55 '' 42'N, 102 degrees 29 '' 11'W, approximate scale 1:90,000) was compiled from digital Landsat Enhanced Thematic Mapper Plus satellite imagery and digital and hard-copy stereo-aerial photographs. The ice stream bed is dominated by parallel mega-scale glacial lineations (MGSL), whose lengths exceed several kilometres but the map also reveals that they have, in places, been superimposed with transverse ridges known as ribbed moraines. The ribbed moraines lie on top of the MSGL and appear to have segmented the individual lineaments. This indicates that formation of the ribbed moraines post-date the formation of the MSGL. The presence of ribbed moraine in the onset zone of another palaeo-ice stream has been linked to oscillations between cold and warm-based ice and/or a patchwork of cold-based areas which led to acceleration and deceleration of ice velocity. Our hypothesis is that the ribbed moraines on the Dubawnt Lake Ice Stream bed are a manifestation of the process that led to ice stream shut-down and may be associated with the process of basal freeze-on. The precise formation of ribbed moraines, however, remains open to debate and field observation of their structure will provide valuable data for formal testing of models of their formation.
Resumo:
Ascertaining the location of palaeo-ice streams is crucial in order to produce accurate reconstructions of palaeo-ice sheets and examine interactions with the ocean-climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow-patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow-sets indicative of ice streaming are found feeding into the marine trough and cross-cutting relationships between these flow-sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low-gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet-ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Glaciers occupy an area of similar to 1600 km(2) in the Caucasus Mountains. There is widespread evidence of retreat since the Little Ice Age, but an up-to-date regional assessment of glacier change is lacking. In this paper, satellite imagery (Landsat Thematic Mapper and Enhanced Thematic Mapper Plus) is used to obtain the terminus position of 113 glaciers in the central Caucasus in 1985 and 2000, using a manual delineation process based on a false-colour composite (bands 5, 4, 3). Measurements reveal that 94% of the glaciers have retreated, 4% exhibited no overall change and 2% advanced. The mean retreat rate equates to similar to 8 m a(-1), and maximum retreat rates approach similar to 38 m a(-1). The largest (>10 km(2)) glaciers retreated twice as much (similar to 12 m a(-1)) as the smallest (<1 km(2)) glaciers (similar to 6 m a(-1)), and glaciers at lower elevations generally retreated greater distances. Supraglacial debris cover has increased in association with glacier retreat, and the surface area of bare ice has reduced by similar to 10% between 1985 and 2000. Results are compared to declassified Corona imagery from the 1960s and 1970s and detailed field measurements and mass-balance data for Djankuat glacier, central Caucasus. It is concluded that the decrease in glacier area appears to be primarily driven by increasing temperatures since the 1970s and especially since the mid-1990s. Continued retreat could lead to considerable changes in glacier runoff, with implications for regional water resources.
Resumo:
This paper reports changes in supraglacial debris cover and supra-/proglacial lake development associated with recent glacier retreat (1985-2000) in the central Caucasus Mountains, Russia. Satellite imagery (Landsat TM and ETM+) was used to map the surface area and supraglacial debris cover on six neighbouring glaciers in the Adylsu valley through a process of manual digitizing on a false-colour composite of bands 5, 4, 3 (red, green, blue). The distribution and surface area of supraglacial and proglacial lakes was digitized for a larger area, which extended to the whole Landsat scene. We also compare our satellite interpretations to field observations in the Adylsu valley. Supraglacial debris cover ranges from < 5% to > 25% on individual glaciers, but glacier retreat between 1985 and 2000 resulted in a 3-6% increase in the proportion of each glacier covered by debris. The only exception to this trend was a very small glacier where debris cover did not change significantly and remote mapping proved more difficult. The increase in debris cover is characterized by a progressive upglacier migration, which we suggest is being driven by focused ablation (and therefore glacier thinning) at the up-glacier limit of the debris cover, resulting in the progressive exposure of englacial debris. Glacier retreat has also been accompanied by an increase in the number of proglacial and supraglacial lakes in our study area, from 16 in 1985 to 24 in 2000, representing a 57% increase in their cumulative surface area. These lakes appear to be impounded by relatively recently lateral and terminal moraines and by debris deposits on the surface of the glacier. The changes in glacier surface characteristics reported here are likely to exert a profound influence on glacier mass balance and their future response to climate change. They may also increase the likelihood of glacier-related hazards (lake outbursts, debris slides), and future monitoring is recommended.
Resumo:
Victoria Island lies at the north-western extremity of the region covered by the vast North American Laurentide Ice Sheet (LIS) in the Canadian Arctic Archipelago. This area is significant because it linked the interior of the LIS to the Arctic Ocean, probably via a number of ice streams. Victoria Island, however, exhibits a remarkably complex glacial landscape, with several successive generations of ice flow indicators superimposed on top of each other and often at abrupt (90 degrees) angles. This complexity represents a major challenge to those attempting to produce a detailed reconstruction of the glacial history of the region. This paper presents a map of the glacial geomorphology of Victoria Island. The map is based on analysis of Landsat Enhanced Thematic Plus (ETM+) satellite imagery and contains over 58,000 individual glacial features which include: glacial lineations, moraines (terminal, lateral, subglacial shear margin), hummocky moraine, ribbed moraine, eskers, glaciofluvial deposits, large meltwater channels, and raised shorelines. The glacial features reveal marked changes in ice flow direction and vigour over time. Moreover, the glacial geomorphology indicates a non-steady withdrawal of ice during deglaciation, with rapidly flowing ice streams focussed into the inter-island troughs and several successively younger flow patterns superimposed on older ones. It is hoped that detailed analysis of this map will lead to an improved reconstruction of the glacial history of this area which will provide other important insights, for example, with respect to the interactions between ice streaming, deglaciation and Arctic Ocean meltwater events.
Resumo:
The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.
Resumo:
Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.