706 resultados para Ken Schlesinger
Resumo:
Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Resumo:
The catalytic subunit of human telomerase (TERT) is highly expressed in cancer cells, and correlates with complex cytogenetics and disease severity in acute myeloid leukemia (AML). The TERT promoter is situated within a large CpG island, suggesting that expression is methylation-sensitive. Studies suggest a correlation between hypermethylation and TERT overexpression. We investigated the relationship between TERT promoter methylation and expression and telomerase activity in human leukemia and lymphoma cell lines. DAC-induced demethylation and cell death were observed in all three cell lines, as well as telomere shortening in HL-60 cells. DAC treatment reduced TERT expression and telomerase activity in OCI/AML3 and HL-60 cells, but not in U937 cells. Control U937 cells expressed lower levels of TERT mRNA, carried a highly methylated TERT core promoter, and proved more resistant to DAC-induced repression of TERT expression and cell death. AML patients had significantly lower methylation levels at several CpGs than "well elderly" individuals. This study, the first to investigate the relationship between TERT methylation and telomerase activity in leukemia cells, demonstrated a differential methylation pattern and response to DAC in three AML cell lines. We suggest that, although DAC treatment reduces TERT expression and telomerase activity, this is unlikely to occur via direct demethylation of the TERT promoter. However, further investigations on the regions spanning CpGs 7-12 and 14-16 may reveal valuable information regarding transcriptional regulation of TERT.
Resumo:
Nuclear factor-kappaB (NF-kappaB) has been implicated in a number of malignancies and has been suggested to be a potential molecular target in the treatment of leukaemia. This study demonstrated the constitutive activation of NF-kappaB in human myeloid blasts and a clear correlation between NF-kappaB expression and in vitro cytoprotection. High NF-kappaB expression was found in many of the poor prognostic acute myeloid leukaemia (AML) subtypes, such as French-American-British classification M0 and M7, and the poor cytogenetic risk group. The in vitro effects of LC-1, a novel dimethylamino-parthenolide analogue, were assessed in 62 primary untreated AML samples. LC-1 was found to be cytotoxic to AML cells in a dose-dependent manner, mediated through the induction of apoptosis. The median drug concentration necessary to kill 50% of the cells was 4.5 micromol/l for AML cells, compared with 12.8 micromol/l for normal marrow cells. LC-1 was shown to reduce the five individual human NF-kappaB Rel proteins in a dose-dependent manner. The subsequent inhibition of many NF-kappaB-regulated cytokines was also demonstrated. Importantly, sensitivity to LC-1 was correlated with the basal NF-kappaB activity. Consequently, LC-1 treatment provides a proof of principle for the use of NF-kappaB inhibitors in the treatment of AML.
Resumo:
Activating mutations of the FMS-like tyrosine kinase 3 gene (FLT3) occur in approximately one-third of patients with acute myeloid leukaemia (AML) and predict for a poor outcome. Heat shock protein 90 (Hsp90) is a molecular chaperone that is frequently used by cancer cells to stabilise mutant oncoproteins. Mutant FLT3 is chaperoned by Hsp90 in primary AML blasts whereas unmutated FLT3 is not, making Hsp90 inhibitors potentially useful therapeutically. The present study showed that inhibition of Hsp90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) was cytotoxic to primary AML cells expressing mutant FLT3. Inhibition of Hsp90 results in altered downstream signalling effects in primary AML cells with disruption of Janus kinase-signal transducer and activator of transcription (JAK-STAT), mitogen-activated protein kinase and phosphatidylinositol 3/AKT signalling pathways. Co-treatment of blasts with 17-AAG and cytarabine resulted in a synergistic or additive effect in approximately 50% of AML cases tested. Our results confirm that Hsp90 is a valid molecular target in the therapy of AML. Inhibition of Hsp90 in parallel with conventional AML therapies may have particular benefit in those patients with the poor prognostic FLT3 mutant disease.
Resumo:
Research over the past decade has confirmed that epigenetic alterations act in concert with genetic lesions to deregulate gene expression in acute myeloid leukemia and myelodysplastic syndromes. In addition, we now have the capability to pharmaceutically target epigenetic modifications, and there is an urgent need forearly validation of the efficacy of the drugs. Also, an improved understanding of the functionality of epigenetic modifications may further pave the road towards an individualized therapy. Here, we provide the pros and cons of the currently most feasible methods used for characterizing the methylome in clinical samples, and give a brief introduction to novel approaches to sequencing that may revolutionize our abilities to characterize the genomes and epigenomes in acute myeloid leukemia and myelodysplastic syndrome patients.
Resumo:
Overexpression of MN1, ERG, BAALC, and EVI1 (MEBE) genes in cytogenetically normal acute myeloid leukemia (AML) patients is associated with poor prognosis, but their prognostic effect in patients with myelodysplastic syndromes (MDS) has not been studied systematically. Expression data of the four genes from 140 MDS patients were combined in an additive score, which was validated in an independent patient cohort of 110 MDS patients. A high MEBE score, defined as high expression of at least two of the four genes, predicted a significantly shorter overall survival (OS) (HR 2.29, 95 % CI 1.3-4.09, P?=?.005) and time to AML progression (HR 4.83, 95 % CI 2.01-11.57, P?
Resumo:
TRIB2 is a potent oncogene, elevated in a subset of human acute myeloid leukaemias (AML) with a mixed myeloid/lymphoid phenotype and NOTCH1 mutations. Although rare in AML, activating NOTCH1 mutations occur in 50% of all T cell acute lymphoblastic leukaemias (T-ALL). TRIB2 is a NOTCH1 target gene that functions in the degradation of key proteins and modulation of MAPK signalling pathways, implicated in haematopoietic cell survival and proliferation. This study showed that TRIB2 expression level is highest in the lymphoid compartment of normal haematopoietic cells, specifically in T cells. Analysis of TRIB2 expression across 16 different subtypes of human leukaemia demonstrated that TRIB2 expression was higher in ALL phenotypes versus all other phenotypes including AML, chronic lymphocytic leukaemia (CLL), myelodysplastic syndrome (MDS) and chronic myeloid leukaemia (CML). A T cell profile was distinguished by high TRIB2 expression in normal and malignant haematopoiesis. High TRIB2 expression was seen in T-ALL with normal karyotype and correlated with NOTCH signalling pathways. High TRIB2 expression correlated with NOTCH1/FBXW7 mutations in a paediatric T-ALL cohort, strongly linking NOTCH1 activation and high TRIB2 expression in paediatric T-ALL. The relationship between TRIB2 and T cell signalling pathways uniquely identifies leukaemia subtypes and will be useful in the advancement of our understanding of T cell and ALL biology.
Resumo:
This article explores how the design and layout of the urban environment can have significant social impacts on working class communities whose access to employment and other necessary services depends largely on public transport and safe walk-able streets. It does so by considering a case study of Belfast. Although Belfast has a distinctive recent history as the site of political violence and territorial division, it also has a spatial configuration that emerged out of a modernising roads and redevelopment programme in the 1960s and 1970s. However, an understanding of contemporary Belfast, particularly its urban structure and form, requires n analysis of how the social impacts of such ubiquitous regional and urban planning practices were not addressed. The article argues that a culture of ‘politically safe’ bureaucratic inaction developed during the ‘war years’ has been sustained in the ‘new democracy’. In turn, this has had significant consequences for the functioning of the city. Major areas of derelict land around the city core together with the impediments created by regional road infrastructure have combined to create a doughnut city that, on the one hand, facilitates a commuting middle class, while on the other, discriminates against the poorest inner city communities. The article goes on to examine how an activist urban design group, known as the Forum for Alternative Belfast, has responded to these challenges. It focuses particularly on action-research undertaken during its 2010 Summer School which aimed to address issues of disconnection in inner North Belfast that affect some of the most territorialised and deprived communities in the city.
Resumo:
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Resumo:
Several growth factors and transcription factors have been reported to play important roles in brown adipocyte differentiation and modulation of thermogenic gene expression, especially the expression of UCP1. In this study, we focused on KLF11 and KLF15, which were expressed highly in brown adipose tissue. Our data demonstrated that KLF11 and KLF15 interacted directly with the UCP1 promoter using GC-box and GT-boxes, respectively. Co-transfection of KLF11 and KLF15 in the mesenchymal stem cell line muBM3.1 during brown adipocyte differentiation enhanced the expression level of UCP1. KLF11, but not KLF15, was essential for UCP1 expression during brown adipocyte differentiation of muBM3.1.
Resumo:
We had previously demonstrated the participation of whole bone marrow cells from adult mice in the reconstitution of skin, including the epidermis and hair follicles. To get an insight into cell populations that give rise to the epithelial components of the reconstituted skin, we fractionated bone marrow cells derived from green fluorescent protein-transgenic mice by density gradient. Unexpectedly, we found that a substantial amount of mononucleated cells (approximately 30%) was recovered in the pellet fraction and that the cells in the pellet fraction preferentially differentiated into epithelial components of skin, rather than the cells in the mononuclear cell fraction. The pellet fraction contained more CD45-negative (thus uncommitted to the hematopoietic cell lineage) cells than the mononuclear cell fraction. These results indicate that density gradient fractionation results in significant loss of specific progenitor cells into the usually discarded pellet fraction.
Resumo:
Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.