994 resultados para Karolinska Sleepiness Scale
Resumo:
This work analyzes whether the relationship between risk and returns predicted by the Capital Asset Pricing Model (CAPM) is valid in the Brazilian stock market. The analysis is based on discrete wavelet decomposition on different time scales. This technique allows to analyze the relationship between different time horizons, since the short-term ones (2 to 4 days) up to the long-term ones (64 to 128 days). The results indicate that there is a negative or null relationship between systemic risk and returns for Brazil from 2004 to 2007. As the average excess return of a market portfolio in relation to a risk-free asset during that period was positive, it would be expected this relationship to be positive. That is, higher systematic risk should result in higher excess returns, which did not occur. Therefore, during that period, appropriate compensation for systemic risk was not observed in the Brazilian market. The scales that proved to be most significant to the risk-return relation were the first three, which corresponded to short-term time horizons. When treating differently, year-by-year, and consequently separating positive and negative premiums, some relevance is found, during some years, in the risk/return relation predicted by the CAPM. However, this pattern did not persist throughout the years. Therefore, there is not any evidence strong enough confirming that the asset pricing follows the model.
Resumo:
BACKGROUND: Peer pressure is regarded as an important determinant of substance use, sexual behavior and juvenile delinquency. However, few peer pressure scales are validated, especially in French or German. Little is known about the factor structure of such scales or the kind of scale needed: some scales takes into account both peer pressure to do and peer pressure not to do, while others consider only peer pressure to do. The aim of the present study was to adapt French and German versions of the Peer Pressure Inventory, which is one of the most widely used scales in this field. We considered its factor structure and concurrent validity. METHODS: Five thousand eight hundred and sixty-seven young Swiss men filled in a questionnaire on peer pressure, substance use, and other variables (conformity, involvement) in a cohort study. RESULTS: We identified a four-factor structure, with the three factors of the initial Peer Pressure Inventory (involvement, conformity, misconduct) and adding a new one (relationship with girls). A non-valued scale (from no peer pressure to peer pressure to do only) showed stronger psychometric qualities than a valued scale (from peer pressure not to do to peer pressure to do). Concurrent validity was also good. Each behavior or attitude was significantly associated with peer pressure. CONCLUSION: Peer pressure seems to be a multidimensional concept. In this study, peer pressure to do showed the strongest influence on participants. Indeed, peer pressure not to do did not add anything useful. Only peer pressure to do affected young Swiss men's behaviors and attitudes and was reliable.
Resumo:
A first assessment of debris flow susceptibility at a large scale was performed along the National Road N7, Argentina. Numerous catchments are prone to debris flows and likely to endanger the road-users. A 1:50,000 susceptibility map was created. The use of a DEM (grid 30 m) associated to three complementary criteria (slope, contributing area, curvature) allowed the identification of potential source areas. The debris flow spreading was estimated using a process- and GISbased model (Flow-R) based on basic probabilistic and energy calculations. The best-fit values for the coefficient of friction and the mass-to-drag ratio of the PCM model were found to be ? = 0.02 and M/D = 180 and the resulting propagation on one of the calibration site was validated using the Coulomb friction model. The results are realistic and will be useful to determine which areas need to be prioritized for detailed studies.
Resumo:
Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.
Resumo:
The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
AIM: Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS: Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS: Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION: This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.
Resumo:
The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.
Resumo:
Background: Despite the fact that labour market flexibility has resulted in an expansion of precarious employment in industrialized countries, to date there is limited empirical evidence about its health consequences. The Employment Precariousness Scale (EPRES) is a newly developed, theory-based, multidimensional questionnaire specifically devised for epidemiological studies among waged and salaried workers. Objective: To assess acceptability, reliability and construct validity of EPRES in a sample of waged and salaried workers in Spain. Methods: Cross-sectional study, using a sub-sample of 6.968 temporary and permanent workers from a population-based survey carried out in 2004-2005. The survey questionnaire was interviewer administered and included the six EPRES subscales, measures of the psychosocial work environment (COPSOQ ISTAS21), and perceived general and mental health (SF-36). Results: A high response rate to all EPRES items indicated good acceptability; Cronbach’s alpha coefficients, over 0.70 for all subscales and the global score, demonstrated good internal consistency reliability; exploratory factor analysis using principal axis analysis and varimax rotation confirmed the six-subscale structure and the theoretical allocation of all items. Patterns across known groups and correlation coefficients with psychosocial work environment measures and perceived health demonstrated the expected relations, providing evidence of construct validity. Conclusions: Our results provide evidence in support of the psychometric properties of EPRES, which appears to be a promising tool for the measurement of employment precariousness in public health research.
Resumo:
INTRODUCTION: Anhedonia is defined as a diminished capacity to experience pleasant emotion and is commonly included among the negative symptoms of schizophrenia. However, if patients report experiencing a lower level of pleasure than controls, they report experiencing as much pleasure as controls with online measurements of emotion. OBJECTIVE: The Temporal Experience of Pleasure Scale (TEPS) measures pleasure experienced in the moment and in anticipation of future activities. The TEPS is an 18-item self-report measurement of anticipatory (10 items) and consummatory (eight items) pleasure. The goal of this paper is to assess the psychometric characteristics of the French translation of this scale. METHODS: A control sample was composed of 60 women and 22 men, with a mean age of 38.1 years (S.D.: 10.8). Thirty-six were without qualification and 46 with qualified professional diploma. A sample of 21 patients meeting DSM IV-TR criteria for schizophrenia was recruited among the community psychiatry service of the department of psychiatry in Lausanne. They were five women and 16 men; mean age was of 34.1 years (S.D.: 7.5). Ten obtained a professional qualification and 11 were without qualification. None worked in competitive employment. Their mean dose of chlorpromazine equivalent was 431mg (S.D.: 259). All patients were on atypical antipsychotics. The control sample fulfilled the TEPS and the Physical Anhedonia Scale (PAS). The patient sample fulfilled the TEPS and was independently rated on the Calgary Depression Scale and the Scale for Assessment of Negative Symptoms. For comparison with controls, patients were matched on age, sex and professional qualification. This required the supplementary recruitment of two control subjects. RESULTS: Results with the control sample indicate that the TEPS presents an acceptable internal validity with Crombach alphas of 0.84 for the total scale, 0.74 for the anticipatory pleasure scale and 0.79 for the consummatory pleasure scale. The confirmatory factor analysis indicated that the model is well adapted to our data (chi(2)/dl=1.333; df=134; p<0.0006; root mean square residual, RMSEA=0.064). External validity measured with the PAS showed R=-0.27 (p<0.05) for the consummatory scale and R=-0.26 for the total score. Comparisons between patients and matched controls indicated that patients were significantly lower than control on anticipatory pleasure (t=2.7, df(40), 2-tailed p=0.01; cohen's d=0.83) and on total score of the TEPS (t=2.8, df (40), 2-tailed p=0.01; cohen's d=0.87). The two samples did not differ on consummatory pleasure. The anticipatory pleasure factor and the total TEPS showed significant negative correlation with the SANS anhedonia, respectively R=-0.78 (p<0.01) for the anticipatory factor and R=-0.61 (p<0.01) for the total TEPS. There was also a negative correlation between the anticipatory factor and the SANS avolition of R=-0.50 (p<0.05). These correlations were maintained, with partial correlations controlling for depression and chlorpromazine equivalents. CONCLUSION: The results of this validation show that the French version of the TEPS has psychometric characteristics similar to the original version. These results highlight the discrepancy between results of direct or indirect report of experienced pleasure in patients with schizophrenia. Patients may have difficulties in anticipating the pleasure of future enjoyable activities, but not in experiencing pleasure once in an enjoyable activity. Medication and depression do not seems to modify our results, but this should be better controlled in a longitudinal study. The anticipatory versus consummatory pleasure distinction appears to be useful for the development of new psychosocial interventions, tailored to improve desire in patients suffering from schizophrenia. Major limitations of the study are the small size of patient sample and the under representation of men in the control sample.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.