927 resultados para Jim Bird
Resumo:
Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.
Resumo:
Funding This work was supported by grants from the French Ministry of Research (PhD fellowship to CR), the University of Aberdeen (stipend to CR), the CNRS (PICS grant to BD), the L’Oréal Foundation-UNESCO “For Women in Science” program (fellowship to CR), the Région Rhône-Alpes (student mobility grant CMIRA Explora’doc to CR), the Rectors’ Conference of the Swiss Universities (mobility grant to CR), the Fédération de Recherche 41 BioEnvironnement et Santé (training grant to CR), and the Journal of Experimental Biology (travel grant to CR).
Resumo:
Most migratory bird populations are composed of individuals that migrate and individuals that remain resident. While the role of ecological factors in maintaining this behavioral dimorphism has received much attention, the importance of genetic constraints on the evolution of avian migration has not yet been considered. Drawing on the recorded migratory activities of 775 blackcaps (Sylvia atricapilla) from a partially migratory population in southern France, we tested two alternative genetic models about the relationship between incidence and amount of migratory activity. The amount of migratory activity could be the continuous variable “underlying” the phenotypic expression of migratory urge, or, alternatively, the expression of both traits could be controlled by two separate genetic systems. The distributions of migratory activities in five different cohorts and the inheritance pattern derived from selective breeding experiments both indicate that incidence and amount of migratory activity are two aspects of one trait. Thus, all birds without measurable activity have activity levels at the low end of a continuous distribution, below the limit of expression or detection. The phenotypic dichotomy “migrant–nonmigrant” is caused by a threshold which may not be fixed but influenced both genetically and environmentally. This finding has profound implications for the evolution of migration: the transition from migratoriness to residency should not only be driven by selection favoring resident birds but also by selection for lower migratory activity. This potential for selection on two aspects, residency and migration distance, of the same trait may enable extremely rapid evolutionary changes to occur in migratory behavior.
Resumo:
At least 50 species of birds are represented in 241 bird bones from five late Pleistocene and Holocene archaeological sites on New Ireland (Bismarck Archipelago, Papua New Guinea). The bones include only two of seabirds and none of migrant shorebirds or introduced species. Of the 50 species, at least 12 (petrel, hawk, megapode, quail, four rails, cockatoo, two owls, and crow) are not part of the current avifauna and have not been recorded previously from New Ireland. Larger samples of bones undoubtedly would indicate more extirpated species and refine the chronology of extinction. Humans have lived on New Ireland for ca. 35,000 years, whereas most of the identified bones are 15,000 to 6,000 years old. It is suspected that most or all of New Ireland’s avian extinction was anthropogenic, but this suspicion remains undetermined. Our data show that significant prehistoric losses of birds, which are well documented on Pacific islands more remote than New Ireland, occurred also on large, high, mostly forested islands close to New Guinea.
Resumo:
Batrachotoxins, including many congeners not previously described, were detected, and relative amounts were measured by using HPLC-mass spectrometry, in five species of New Guinean birds of the genus Pitohui as well as a species of a second toxic bird genus, Ifrita kowaldi. The alkaloids, identified in feathers and skin, were batrachotoxinin-A cis-crotonate (1), an allylically rearranged 16-acetate (2), which can form from 1 by sigmatropic rearrangement under basic conditions, batrachotoxinin-A and an isomer (3 and 3a, respectively), batrachotoxin (4), batrachotoxinin-A 3′-hydroxypentanoate (5), homobatrachotoxin (6), and mono- and dihydroxylated derivatives of homobatrachotoxin. The highest levels of batrachotoxins were generally present in the contour feathers of belly, breast, or legs in Pitohui dichrous, Pitohui kirhocephalus, and Ifrita kowaldi. Lesser amounts are found in head, back, tail, and wing feathers. Batrachotoxin (4) and homobatrachotoxin (6) were found only in feathers and not in skin. The levels of batrachotoxins varied widely for different populations of Pitohui and Ifrita, a result compatible with the hypothesis that these birds are sequestering toxins from a dietary source.
Resumo:
Brood parasitism as an alternative female breeding tactic is particularly common in ducks, where hosts often receive eggs laid by parasitic females of the same species and raise their offspring. Herein, we test several aspects of a kin selection explanation for this phenomenon in goldeneye ducks (Bucephala clangula) by using techniques of egg albumen sampling and statistical bandsharing analysis based on resampling. We find that host and primary parasite are indeed often related, with mean r = 0.13, about as high as between first cousins. Relatedness to the host is higher in nests where a parasite lays several eggs than in those where she lays only one. Returning young females parasitize their birth nestmates (social mothers or sisters, which are usually also their genetic mothers and sisters) more often than expected by chance. Such adult relatives are also observed together in the field more often than expected and for longer periods than other females. Relatedness and kin discrimination, which can be achieved by recognition of birth nestmates, therefore play a role in these tactics and probably influence their success.