998 resultados para Jacopone, da Todi, 1230-1306.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The safety and tolerability of vandetanib (ZACTIMA; ZD6474) plus FOLFIRI was investigated in patients with advanced colorectal cancer (CRC). METHODS: Patients eligible for first- or second-line chemotherapy received once-daily oral doses of vandetanib (100 or 300 mg) plus 14-day treatment cycles of FOLFIRI. RESULTS: A total of 21 patients received vandetanib 100 mg (n = 11) or 300 mg (n = 10) + FOLFIRI. Combination therapy was well tolerated at both vandetanib dose levels. There were no DLTs in the vandetanib 100 mg cohort and one DLT of hypertension (CTCAE grade 3) in the 300 mg cohort. The most common adverse events were diarrhoea (n = 20), nausea (n = 12) and fatigue (n = 10). Two patients (one in each cohort) discontinued vandetanib due to adverse events (rash, 100 mg cohort; hypertension, 300 mg cohort). There was no apparent pharmacokinetic interaction between vandetanib and FOLFIRI. Preliminary efficacy results included two confirmed partial responses in the 100 mg cohort and 9 patients with stable disease > or =8 weeks (100 mg, n = 7; 300 mg, n = 2). CONCLUSIONS: Once-daily vandetanib (100 or 300 mg) in combination with a standard FOLFIRI regimen was generally well tolerated in patients with advanced CRC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiation-induced bystander effect (RIBE) increases the probability of cellular response and therefore has important implications for cancer risk assessment following low-dose irradiation and for the likelihood of secondary cancers after radiotherapy. However, our knowledge of bystander signaling factors, especially those having long half-lives, is still limited. The present study found that, when a fraction of cells within a glioblastoma population were individually irradiated with helium ions from a particle microbeam, the yield of micronuclei (MN) in the nontargeted cells was increased, but these bystander MN were eliminated by treating the cells with either aminoguanidine (an inhibitor of inducible nitric oxide (NO) synthase) or anti-transforming growth factor beta1 (anti-TGF-beta1), indicating that NO and TGF-beta1 are involved in the RIBE. Intracellular NO was detected in the bystander cells, and additional TGF-beta1 was detected in the medium from irradiated T98G cells, but it was diminished by aminoguanidine. Consistent with this, an NO donor, diethylamine nitric oxide (DEANO), induced TGF-beta1 generation in T98G cells. Conversely, treatment of cells with recombinant TGF-beta1 could also induce NO and MN in T98G cells. Treatment of T98G cells with anti-TGF-beta1 inhibited the NO production when only 1% of cells were targeted, but not when 100% of cells were targeted. Our results indicate that, downstream of radiation-induced NO, TGF-beta1 can be released from targeted T98G cells and plays a key role as a signaling factor in the RIBE by further inducing free radicals and DNA damage in the nontargeted bystander cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous reports have shown that DNA methylation profiles within primary human malignant tissues are altered when these cells are transformed into cancer cell lines. However, it is unclear if similar differences in DNA methylation profiles exist between DNA derived from peripheral blood leukocytes (PBLs) and corresponding Epstein-Barr Virus transformed lymphoblastoid cell lines (LCLs). To assess the utility of LCLs as a resource for methylation studies we have compared DNA methylation profiles in promoter and 5' regions of 318 genes in PBL and LCL sample pairs from patients with type 1 diabetes with or without nephropathy. We identified a total of 27 (similar to 8%) genes that revealed different DNA methylation profiles in PBL compared with LCL-derived DNA samples. In conclusion, although the profiles for most promoter regions were similar between PBL-LCL pairs, our results indicate that LCL-derived DNA may not be suitable for DNA methylation studies at least in diabetic nephropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.

Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.

Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.

Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.