984 resultados para Ionized electrons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Reply to the Comment by K. E. Nagaev

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A threshold photoelectron spectrometer applied to the study of atomic and molecular threshold photoionization processes is described. The spectrometer has been used in conjunction with a toroidal grating monochromator at the National Synchrotron Radiation Laboratory (LNLS), Brazil. It can be tuned to accept threshold electrons (< 20 meV) and work with a power resolution of 716 (~18 meV at 12 eV) with a high signal/noise ratio. The performance of this apparatus and some characteristics of the TGM (Toroidal Grating Monochromator) beam line of LNLS are described and discussed by means of argon, O2 and N2 threshold photoelectron spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The interaction of microquasar jets with their environment can produce non-thermal radiation as in the case of extragalactic outflows impacting on their surroundings. Significant observational evidence of jet/medium interaction in galactic microquasars has been collected in the past few years, although little theoretical work has been done regarding the resulting non-thermal emission. Aims. In this work, we investigate the non-thermal emission produced in the interaction between microquasar jets and their environment, and the physical conditions for its production. Methods. We developed an analytical model based on those successfully applied to extragalactic sources. The jet is taken to be a supersonic and mildly relativistic hydrodynamical outflow. We focus on the jet/shocked medium structure in its adiabatic phase, and assume that it grows in a self-similar way. We calculate the fluxes and spectra of the radiation produced via synchrotron, inverse Compton, and relativistic bremsstrahlung processes by electrons accelerated in strong shocks. A hydrodynamical simulation is also performed to investigate further the jet interaction with the environment and check the physical parameters used in the analytical model. Results. For reasonable values of the magnetic field, and using typical values of the external matter density, the non-thermal particles could produce significant amounts of radiation at different wavelengths, although they do not cool primarily radiatively, but by adiabatic losses. The physical conditions of the analytical jet/medium interaction model are consistent with those found in the hydrodynamical simulation. Conclusions. Microquasar jet termination regions could be detectable at radio wavelengths for current instruments sensitive to ~arcminute scales. At X-ray energies, the expected luminosities are moderate, although the emitter is more compact than the radio one. The source may be detectable by XMM-Newton or Chandra, with 1-10 arcsec of angular resolution. The radiation at gamma-ray energies may be within the detection limits of the next generation of satellite and ground-based instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The encapsulation of metal clusters in endohedral metallofullerenes (EMFs) takes place in cages that in most cases are far from being the most stable isomer in the corresponding hollow fullerenes. There exist several possible explanations for the choice of the hosting cages in EMFs, although the final reasons are actually not totally well understood. Moreover, the reactivity and regioselectivity of (endohedral metallo)fullerenes have in the past decade been shown to be generally dependent on a number of factors, such as the size of the fullerene cage, the type of cluster that is being encapsulated, and the number of electrons that are transferred formally from the cluster to the fullerene cage. Different rationalizations of the observed trends had been proposed, based on bond lengths, pyramidalization angles, shape and energies of (un)occupied orbitals, deformation energies of the cages, or separation distances between the pentagon rings. Recently, in our group we proposed that the quest for the maximum aromaticity (maximum aromaticity criterion) determines the most suitable hosting carbon cage for a given metallic cluster (i.e. EMF stabilization), including those cases where the IPR rule is not fulfilled. Moreover, we suggested that local aromaticity plays a determining role in the reactivity of EMFs, which can be used as a criterion for understanding and predicting the regioselectivity of different reactions such as Diels-Alder cycloadditions or Bingel-Hirsch reactions. This review highlights different aspects of the aromaticity of fullerenes and EMFs, starting from how this can be measured and ending by how it can be used to rationalize and predict their molecular structure and reactivity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present the optogalvanic effect in ionized gases in an historical perspective. This effect was observed for the first time by Foote and Mohler in 1925, and explained by Penning in 1928 for mixtures (Ne-Ar) and pure gases (or vapours) in 1937. Also, we show some aspects of the contributions of Romenian authors for the development of optogalvanic spectroscopy, which was used as a new technique only after 1964.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an Analytic Model of Intergalactic-medium and GAlaxy (AMIGA) evolution since the dark ages. AMIGA is in the spirit of the popular semi-analytic models of galaxy formation, although it does not use halo merger trees but interpolates halo properties in grids that are progressively built. This strategy is less memory-demanding and allows one to start modeling at sufficiently high redshifts and low halo masses to have trivial boundary conditions. The number of free parameters is minimized by making a causal connection between physical processes usually treated as independent of each other, which leads to more reliable predictions. However, the strongest points of AMIGA are the following: (1) the inclusion of molecular cooling and metal-poor, population III (Pop III) stars with the most dramatic feedback and (2) accurate follow up of the temperature and volume filling factor of neutral, singly ionized, and doubly ionized regions, taking into account the distinct halo mass functions in those environments. We find the following general results. Massive Pop III stars determine the intergalactic medium metallicity and temperature, and the growth of spheroids and disks is self-regulated by that of massive black holes (MBHs) developed from the remnants of those stars. However, the properties of normal galaxies and active galactic nuclei appear to be quite insensitive to Pop III star properties due to the much higher yield of ordinary stars compared to Pop III stars and the dramatic growth of MBHs when normal galaxies begin to develop, which cause the memory loss of the initial conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquest treball és la culminació de les pràctiques realitzades al sincrotró ALBA. Situat a Cerdanyola del Vallès, ALBA és un accelerador de 3a generació que permet emmagatzemar un feix d'electrons confinat de fins a 400 mA a 3GeV d'energia, amb l'objectiu d'obtenir llum a partir dels girs provocats al feix. Els sincrotrons moderns com el d'ALBA, el que pretenen és aconseguir un major control i estabilitat de la llum. Per aconseguir-ho, cal que el feix d'electrons que creen la llum estigui controlat al màxim i la seva òrbita sigui estable. Amb aquest objectiu els sincrotrons estant implementant sistemes de Fast Orbit FeedBack (FOFB) o sistemes realimentats de correcció ràpida de l'òrbita, per realitzar correccions d'almenys 100Hz que estabilitzin el feix d'electrons amb menys d'un 10% de l'amplada del feix (5-10μm). El treball exposa el desenvolupament d'una part del sistema de correcció ràpida de l'òrbita dels electrons (FOFB) que s'està duent a terme al sincrotró ALBA. Concretament, s’han revisat els estudis previs realitzats durant la fase de disseny del sincrotró, s’han recalculat funcions de transferència i retards de tots els elements involucrats al sistema. També s’han realitzat simulacions per confirmar la viabilitat del sistema amb les noves dades i finalment s’ha desenvolupat part de la unitat de control determinant el Hardware i s'ha adquirit dades que permetran analitzar el soroll de l'òrbita que en futurs treballs determinaran millor l'algorisme de la unitat de control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Once the seed has germinated, the plant is forced to face all the environmental changes in its habitat. In order to survive, plants have evolved a number of different acclimation systems. The primary reaction behind plant growth and development is photosynthesis. Photosynthesis captures solar energy and converts it into chemical form. Photosynthesis in turn functions under the control of environmental cues, but is also affected by the growth, development, and metabolic state of a plant. The availability of solar energy fluctuates continuously, requiring non-stop adjustment of photosynthetic efficiency in order to maintain the balance between photosynthesis and the requirements and restrictions of plant metabolism. Tight regulation is required, not only to provide sufficient energy supply but also to prevent the damage caused by excess energy. The very first reaction of photosynthesis is splitting of water into the form of oxygen, hydrogen, and electrons. This most fundamental reaction of life is run by photosystem II (PSII), and the energy required for the reaction is collected by the light harvesting complex II (LHCII). Several proteins of the PSII-LHCII complex are reversibly phosphorylated according to the energy balance between photosynthesis and metabolism. Thylakoid protein phosphorylation has been under extensive investigation for over 30 years, yet the physiological role of phosphorylation remains elusive. Recently, the kinases behind the phosphorylation of PSII-LHCII proteins (STN7 and STN8) were identified and the knockout mutants of these kinases became available, providing powerful tools to elucidate the physiological role of PSII-LHCII phosphorylation. In my work I have used the stn7 and stn8 mutants in order to clarify the role of PSII-LHCII phosphorylation in regulation and protection of the photosynthetic machinery according to environmental cues. I show that STN7- dependent PSII-LHCII protein phosphorylation is required to balance the excitation energy distribution between PSII and PSI especially under low light intensities when the excitation energy transfer from LHC to PSII and PSI is efficient. This mechanism differs from traditional light quality-induced “state 1” – “state 2” transition and ensures fluent electron transfer from PSII to PSI under low light, yet having highest physiological relevance under fluctuating light intensity. STN8-dependent phosphorylation of PSII proteins, in turn, is required for fluent turn-over of photodamaged PSII complexes and has the highest importance upon prolonged exposure of the photosynthetic apparatus to excess light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last two decades of studying the Solar Energetic Particle (SEP) phenomenon, intensive emphasis has been put on how and when and where these SEPs are injected into interplanetary space. It is well known that SEPs are related to solar flares and CMEs. However, the role of each in the acceleration of SEPs has been under debate since the major role was taken from flares ascribed to CMEs step by step after the skylab mission, which started the era of CME spaceborn observations. Since then, the shock wave generated by powerful CMEs in between 2-5 solar radii is considered the major accelerator. The current paradigm interprets the prolonged proton intensity-time profile in gradual SEP events as a direct effect of accelerated SEPs by shock wave propagating in the interplanetary medium. Thus the powerful CME is thought of as a starter for the acceleration and its shock wave as a continuing accelerator to result in such an intensity-time profile. Generally it is believed that a single powerful CME which might or might not be associated with a flare is always the reason behind such gradual events.

In this work we use the Energetic and Relativistic Nucleus and Electrons ERNE instrument on board Solar and Heliospheric Observatory SOHO to present an empirical study to show the possibility of multiple accelerations in SEP events. In the beginning we found 18 double-peaked SEP events by examining 88 SEP events. The peaks in the intensity-time profile were separated by 3-24 hours. We divided the SEP events according to possible multiple acceleration into four groups and in one of these groups we find evidence for multiple acceleration in velocity dispersion and change in the abundance ratio associated at transition to the second peak. Then we explored the intensity-time profiles of all SEP events during solar cycle 23 and found that most of the SEP events are associated with multiple eruptions at the Sun and we call those events as Multi-Eruption Solar Energetic Particles (MESEP) events. We use the data available by Large Angle and Spectrometric Coronograph LASCO on board SOHO to determine the CME associated with such events and YOHKOH and GOES satellites data to determine the flare associated with such events. We found four types of MESEP according to the appearance of the peaks in the intensity-time profile in large variation of energy levels. We found that it is not possible to determine whether the peaks are related to an eruption at the Sun or not, only by examining the anisotropy flux, He/p ratio and velocity dispersion. Then we chose a rare event in which there is evidence of SEP acceleration from behind previous CME. This work resulted in a conclusion which is inconsistent with the current SEP paradigm. Then we discovered through examining another MESEP event, that energetic particles accelerated by a second CME can penetrate a previous CME-driven decelerating shock. Finally, we report the previous two MESEP events with new two events and find a common basis for second CME SEPs penetrating previous decelerating shocks. This phenomenon is reported for the first time and expected to have significant impact on modification of the current paradigm of the solar energetic particle events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The De Broglie's relation was a fundamental step in the development of a wave nature for matter. Therefore, we have examined it from the perspective of the new atomic theory. This relation makes successful predictions of the stable energy levels for electrons orbiting a nucleus. The formulation of the de Broglie's relation is a fundamental application of the theory of wave-particle duality for a material particle. In this work, the direct demonstration employing the equations E = mc² and E = hcλ, was avoided. We provide a complete analysis of this relation considering features of the special theory of relativity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen reduction reaction was studied in alkaline media using manganese oxides obtained from spent batteries as electrocatalysts. Three processes were used to recover manganese oxides from spent batteries. The particles obtained were in the range from 8 to 11 nm. The electrochemical experiments indicated a good electrocatalytic activity toward oxygen reduction using the different samples and showing approximately a direct transference of 4 electrons during the process. Even though all the processes were efficient, the best result was observed for the prepared sample using reactants of low cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review is presented an innovative technology for use of animal and vegetable waste with high pollution levels in microbial fuel cell (MFC) as an alternative to waste remediation and simultaneously producing electricity and fertilizer for agriculture. A brief history of MFC, the studies about the electron transfer mechanisms, discussion of the biological nanowires in bacteria and the use of chemical mediators or carriers of electrons are explained. The factors influencing the performance of MFCs, the application in waste and sewage treatment and power generation are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work TiO2 films were formed over Indium Tin Oxide (ITO) employing cathodic electrophoretic deposition (Cathodic-EPD) and Dr. Blade Technique. The films were characterized by electrochemical techniques in order to compare their electronic properties; as well as, their photoelectrochemical behavior. The electrochemical performance showed by the films, allowed to relate the modification occurring during the Cathodic-EPD, with the partial reduction of TiO2 nanoparticles, generating Ti3+ defects. These trapping states are modifying the electronic properties of the film, and diminishing the transport of the photoelectrogenerated electrons toward ITO.