991 resultados para Intangible Culture.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted in cement cisterns to find out the effect of adding different dosages of activated sludge on fish growth and plankton production. Three dosages of sludge,viz., 62·5 gm., 125 gm. and 250 gm. per 240 litres of water were used. Fingerlings ofCyprinus carpio, Cirrhina mrigala andCatla catla responded positively,C. mrigala showing maximum growth. The results indicate that the sludge has a direct influence on increasing growth of fish and production of plankton due to the release of nutrients into the water. The increase in plankton content stops after about 30 days. When greater quantities of sludge were added in the cisterns, fish mortality took place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (>six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of −20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (−80 mV) than that required for evoking the delayed rectifier potassium current (−40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation.The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calendula officinalis is grown widely as an ornamental plant across Europe. It belongs to the large. Asteraceae family. In this study, the aim was to explore the possibilities to use Calendula officinalis as a new model organism for flower development and secondary mechanism studies in Asteraceae. Tissue culture of Calendula officinalis was established using nine different cultivars. Murashige & Skoog (MS) medium with four different combinations of plant growth regulators were tested. Of all these combinations, the medium containing 1mg/l BAP, 0.1 mg/l IAA, and 1mg/l Zeatin achieved highest frequency of adventitious shoot regeneration from hypocotyl and cotyledon explants. Virus-induced gene silencing is a recent developed genetic tool for charactering the gene functions in plants, and extends the range of host plants that are not accessible for Agrobacterium transformation. Here, tobacco rattle virus (TRV)-based VIGS technique was tested in calendula (cv. Single Orange). We used TRV carrying Gerbera hybrid phytoene desaturase (PDS) gene fragment to induce PDS silencing in calendula. Vacuum infiltration and syringe infiltration methods both resulted in photo-bleaching phenotypes in leaves, bracts and petals. Loss-of-function phenotypes occurred on calendula 13 days post-infiltration. In conclusion, the data indicates that calendula explants can be regenerated through tissue culture which is a prerequisite for development of stable transformation methods. However, further optimization is still needed to improve the frequency. In addition, VIGS was applied to silence PDS marker gene expression indicating that this method has potential for gene functional studies in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryogel matrices composed of different polymeric blends were synthesized, yielding a unique combination of hydrophilicity and hydrophobicity with the presence or absence of charged surface. Four such cryogel matrices composed of polyacrylamide-chitosan (PAAC), poly(N-isopropylacrylamide)-chitosan, polyacrylonitrile (PAN), and poly(N-isopropylacrylamide) were tested for growth of different hybridoma cell lines and production of antibody in static culture. All the matrices were capable for the adherence of hybridoma cell lines 6A4D7, B7B10, and H9E10 to the polymeric surfaces as well as for the efficient monoclonal antibody (mAb) production. PAAC proved to be relatively better in terms of both mAb production and cell growth. Further, PAAC cryogel was designed into three different formats, monolith, disks, and beads, and used as packing material for packed-bed bioreactor. Longterm cultivation of 6A4D7 cell line on PAAC cryogel scaffold in all the three formats could be successfully done for a period of 6 weeks under static conditions. Continuous packed-bed bioreactor was setup using 6A4D7 hybridoma cell line in the three reactor formats. The reactors ran continuously for a period of 60 days during which mAb production and metabolism of cells in the bioreactors were monitored periodically. The monolith bioreactor performed most efficiently over a period of 60 days and produced a total of 57.5 mg of antibody in the first 30 days (in 500 mL) with a highest concentration of 115 mu g mL(-1), which is fourfold higher than t-flask culture. The results demonstrate that appropriate chemistry and geometry of the bioreactor matrix for cell growth and immobilization can enhance the reactor productivity. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 170-180, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by the demonstration that tool-use variants among wild chimpanzees and orangutans qualify as traditions (or cultures), we developed a formal model to predict the incidence of these acquired specializations among wild primates and to examine the evolution of their underlying abilities. We assumed that the acquisition of the skill by an individual in a social unit is crucially controlled by three main factors, namely probability of innovation, probability of socially biased learning, and the prevailing social conditions (sociability, or number of potential experts at close proximity). The model reconfirms the restriction of customary tool use in wild primates to the most intelligent radiation, great apes; the greater incidence of tool use in more sociable populations of orangutans and chimpanzees; and tendencies toward tool manufacture among the most sociable monkeys. However, it also indicates that sociable gregariousness is far more likely to produce the maintenance of invented skills in a population than solitary life, where the mother is the only accessible expert. We therefore used the model to explore the evolution of the three key parameters. The most likely evolutionary scenario is that where complex skills contribute to fitness, sociability and/or the capacity for socially biased learning increase, whereas innovative abilities (i.e., intelligence) follow indirectly. We suggest that the evolution of high intelligence will often be a byproduct of selection on abilities for socially biased learning that are needed to acquire important skills, and hence that high intelligence should be most common in sociable rather than solitary organisms. Evidence for increased sociability during hominin evolution is consistent with this new hypothesis. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The envelope protein (E1-E2) of Hepatitis C virus (HCV) is a major component of the viral structure. The glycosylated envelope protein is considered to be important for initiation of infection by binding to cellular receptor(s) and also known as one of the major antigenic targets to host immune response. The present study was aimed at identifying mouse monoclonal antibodies which inhibit binding of virus like particles of HCV to target cells. The first step in this direction was to generate recombinant HCV-like particles (HCV-LPs) specific for genotypes 3a of HCV (prevalent in India) using the genes encoding core, E1 and E2 envelop proteins in a baculovirus expression system. The purified HCV-LPs were characterized by ELISA and electron microscopy and were used to generate monoclonal antibodies (mAbs) in mice. Two monoclonal antibodies (E8G9 and H1H10) specific for the E2 region of envelope protein of HCV genotype 3a, were found to reduce the virus binding to Huh7 cells. However, the mAbs generated against HCV genotype 1b (D2H3, G2C7, E1B11) were not so effective. More importantly, mAb E8G9 showed significant inhibition of the virus entry in HCV JFH1 cell culture system. Finally, the epitopic regions on E2 protein which bind to the mAbs have also been identified. Results suggest a new therapeutic strategy and provide the proof of concept that mAb against HCV-LP could be effective in preventing virus entry into liver cells to block HCV replication.