896 resultados para Informal feedback


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networked control systems (NCSs) have attracted much attention in the past decade due to their many advantages and growing number of applications. Different than classic control systems, resources in NCSs, such as network bandwidth and communication energy, are often limited, which degrade the closed-loop system performance and may even cause the system to become unstable. Seeking a desired trade-off between the closed-loop system performance and the limited resources is thus one heated area of research. In this paper, we analyze the trade-off between the sensor-to-controller communication rate and the closed-loop system performance indexed by the conventional LQG control cost. We present and compare several sensor data schedules, and demonstrate that two event-based sensor data schedules provide better trade-off than an optimal offline schedule. Simulation examples are provided to illustrate the theories developed in the paper. © 2012 AACC American Automatic Control Council).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problem of constructing a distributed feedback law to achieve synchronization for a group of k agents whose states evolve on SO(n) and which exchange only partial state information along communication links. The partial state information is given by the action of the state on reference vectors in ℝn. We propose a gradient based control law which achieves exponential local convergence to a synchronization configuration under a rank condition on a generalized Laplacian matrix. Furthermore, we discuss the case of time-varying reference vectors and provide a convergence result for this case. The latter helps reach synchronization, requiring less communication links and weaker conditions on the instantaneous reference vectors. Our methods are illustrated on an attitude synchronization problem where agents exchange only their relative positions observed in the respective body frames. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper considers the feedback stabilization of periodic orbits in a planar juggler. The juggler is "blind," i.e, he has no other sensing capabilities than the detection of impact times. The robustness analysis of the proposed control suggests that the arms acceleration at impact is a crucial design parameter even though it plays no role in the stability analysis. Analytical results and convergence proofs are provided for a simplified model of the juggler. The control law is then adapted to a more accurate model and validated in an experimental setup. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the the design of a tracking controller for the popular bouncing ball model: the continuous-time actuation of a table is used to control the impacts of the table with a bouncing ball. The proposed control law uses the impact times as the sole feedback information. We show that the acceleration of the table at impact plays no role in the stability analysis but is an important parameter for the robustness of the feedback system to model uncertainty, in particular to the uncertainty on the coefficient of restitution. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the question relative to the role of sensory feedback in rhythmic tasks. We study the properties of a sinusoidally vibrating wedge-billiard as a model for 2-D bounce juggling. If this wedge is actuated with an harmonic sinusoidal input, it has been shown that some periodic orbits are exponentially stable. This paper explores an intuitive method to enlarge the parametric stability region of the simplest of these orbits. Accurate processing of timing is proven to be an important key to achieve frequency-locking in rhythmic tasks. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents two mechanisms for global oscillations in feedback systems, based on bifurcations in absolutely stable systems. The external characterization of the oscillators provides the basis for a (energy-based) dissipativity theory for oscillators, thereby opening new possibilities for rigorous stability analysis of high-dimensional systems and interconnected oscillators. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodic feedback stabilization is a very natural solution to overcome the topological obstructions which may occur when one tries to asymptotically (locally) stabilize a (locally) controllable nonlinear system around an equilibrium point. The object of this paper is to give a simple geometric interpretation of this fact, to show that one obtains a weakened form of those obstructions when periodic feedback is used, and to illustrate the success of periodic feedback stabilization on a representative system which contains a drift.