935 resultados para Induced Damage
Resumo:
The method of Matsumoto and Ohta [Matsumoto, K. & Ohta, T. (1992) Chromosoma 102, 60-65; Matsumoto, K. & Ohta, T. (1995) Mutat. Res. 326, 93-98] to induce large numbers of endoreduplicated Chinese hamster ovary cells has now been coupled with the fluorescence-plus-Giemsa method of Perry and Wolff [Perry, P. & Wolff, S. (1974) Nature (London) 251, 156-158] to produce harlequin endoreduplicated chromosomes that after the third round of DNA replication are composed of a chromosome with a light chromatid and a dark chromatid in close apposition to its sister chromosome containing two light chromatids. Unless the pattern is disrupted by sister chromatid exchange (SCE), the dark chromatid is always in the center, so that the order of the chromatids is light-dark light-light. The advent of this method, which permits the observation of SCEs in endoreduplicated cells, makes it possible to determine with great ease in which cell cycle an SCE occurred. This now allows us to approach several vexing questions about the induction of SCEs (genetic damage and its repair) after exposure to various types of mutagenic carcinogens. The present experiments have allowed us to observe how many cell cycles various types of lesions that are induced in DNA by a crosslinking agent, an alkylating agent, or ionizing radiation, and that are responsible for the induction of SCEs, persist before being repaired and thus lose their ability to inflict genetic damage. Other experiments with various types of mutagenic carcinogens and various types of cell lines that have defects in different DNA repair processes, such as mismatch repair, excision repair, crosslink repair, and DNA-strand-break repair, can now be carried out to determine the role of these types of repair in removing specific types of lesions.
Resumo:
Hydroxyl radical damage in metastatic tumor DNA was elucidated in women with breast cancer, and a comparison was made with nonmetastatic tumor DNA. The damage was identified by using statistical models of modified base and Fourier transform-infrared spectral data. The modified base models revealed a greater than 2-fold increase in hydroxyl radical damage in the metastatic tumor DNA compared with the nonmetastatic tumor DNA. The metastatic tumor DNA also exhibited substantially greater base diversity than the nonmetastatic DNA, and a progression of radical-induced base damage was found to be associated with the growth of metastatic tumors. A three-dimensional plot of principal components from factor analysis, derived from infrared spectral data, also showed that the metastatic tumor DNA was substantially more diverse than the tightly grouped nonmetastatic tumor DNA. These cohesive, independently derived findings suggest that the hydroxyl radical generates DNA phenotypes with various metastatic potentials that likely contribute to the diverse physiological properties and heterogeneity characteristic of metastatic cell populations.
Resumo:
Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.
Resumo:
Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.
Resumo:
The activation of heat shock genes by diverse forms of environmental and physiological stress has been implicated in a number of human diseases, including ischemic damage, reperfusion injury, infection, neurodegeneration, and inflammation. The enhanced levels of heat shock proteins and molecular chaperones have broad cytoprotective effects against acute lethal exposures to stress. Here, we show that the potent antiinflammatory drug indomethacin activates the DNA-binding activity of human heat shock transcription factor 1 (HSF1). Perhaps relevant to its pharmacological use, indomethacin pretreatment lowers the temperature threshold of HSF1 activation, such that a complete heat shock response can be attained at temperatures that are by themselves insufficient. The synergistic effect of indomethacin and elevated temperature is biologically relevant and results in the protection of cells against exposure to cytotoxic conditions.
Resumo:
Periodontitis is a chronic inflammatory disease that results in extensive soft and hard tissue destruction of the periodontium. Porphyromonas gingivalis possesses an array of virulence factors and has been shown to induce expression of inducible nitric oxide synthase (iNOS) in inflammatory cells. The aim of this study was to investigate the effect of eliminating iNOS in a murine model of P. gingivalis infection. This was achieved by utilizing a P. gingivalis-induced skin abscess model, and an alveolar bone loss model employing an oral infection of P. gingivalis in iNOS knockout mice. The results indicated that iNOS knockout mice exhibit more extensive soft tissue damage and alveolar bone loss in response to P. gingivalis infection compared to wild-type mice. The local immune response to P. gingivalis in iNOS knockout mice was characterized by increased numbers of polymorphonuclear monocytes, while the systemic immune response was characterized by high levels of interleukin-12. The iNOS is required for an appropriate response to P. gingivalis infection.
Resumo:
The application of an antiserum to ultraviolet radiation (UVR)-damaged DNA is presented. A novel experimental system was employed to ascertain the limits of detection for this antiserum. Using a DNA standard containing a known amount of dimer, the limits of detection were found to be 0.9 fmol of dimer. This was compared to a limit of 20-50 fmol dimer using gas chromatography-mass spectrometry (GC-MS). Induction of thymine dimers in DNA following UVR exposure, as assessed using this antiserum in an enzyme-linked immunosorbent assay (ELISA), was compared with GC-MS measurements. The ELISA method successfully demonstrated the induction of lesions in DNA irradiated either with UVC or UVB, although despite high sensitivity, no discernible binding was seen to UVA-irradiated DNA. The antiserum was also shown to be applicable to immunocytochemistry, localising damage in the nuclei of UVR exposed keratinocytes in culture. The ability of the antiserum to detect DNA damage in skin biopsies of individuals exposed to sub-erythemal doses of UVR was also demonstrated. Moreover, the subsequent removal of this damage, as evidenced by a reduction in antiserum staining, was noted in sections of biopsies taken in the hours following irradiation. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.
Resumo:
Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^
Resumo:
The study was funded by the Association of Anaesthetists of Great Britain and Ireland, the British Journal of Anaesthesia/Royal College of Anaesthetists (PhD studentship award to BM) and the Melville Trust.
Resumo:
Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage.
Resumo:
A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.