996 resultados para Indo-European
Resumo:
The North Sea ecosystem has recently undergone dramatic changes, observed as altered biomass of individual species spanning a range of life forms from algae to birds, with evidence for an approximate doubling in the abundance of both phytoplankton and benthos as part of a regime shift after 1987. Remarkably, these changes, in part recorded in the Phytoplankton Colour Index of the Continuous Plankton Recorder (CPR) survey, are notable as episodic shifts occurring in 1988/89 and 1998 imposed on a gradual decadal trend. These biological events are shown to be a response to coincident changes in oceanic input and water temperature. Geostrophic transports have been calculated from a hydrographic section across the Rockall Trough, and a time series of seasurface temperature derived from satellite observations. The 2 pulses of oceanic incursion into the North Sea in circa 1988 and 1998 coincided with strong northward advection of anomalously warm water at the edge of the continental shelf.
Resumo:
Centropages chierchiae and Temora stylifera occurred rarely in the Continuous Plankton Recorder (CPR) survey in the Bay of Biscay, Celtic Sea, and English Channel before 1988. By 2000 they were found frequently and in abundance. The seasonal cycles of abundance of these species differ, C. chierchiae occurring mainly in the summer while T. stylifera was found most frequently in late autumn or winter towards the northern limits of its distribution. The increase in abundance of both species is related to temperature. However, in the years when it was found in the samples, the frequency of occurrence of C. chierchiae was correlated positively with the strength of the shelf edge current and negatively with the North Atlantic Oscillation (NAO) while the reverse was true for T. stylifera.
Resumo:
The type specimens of the common tropical intertidal barnacles Chthamalus malayensis and C. moro, were re-investigated and compared with other specimens of Chthamalus from the Indian Ocean, Indo-Malaya, northern Australia, Vietnam, China and the western Pacific, using ‘arthropodal’ as well as shell characters. Chthamalus malayensis occurs widely in Indo-Malayan and tropical Australian waters. It ranges westwards in the Indian Ocean to East Africa and northwards in the Pacific to Vietnam, China and the Ryukyu Islands. Chthamalus malayensis has the arthropodal characters attributed to it by Pope (1965); conical spines on cirrus 1 and serrate setae with basal guards on cirrus 2. Chthamalus moro is currently fully validated only for the Philippines, Indonesia, Taiwan, the Xisha (Paracel) Islands, the Ryukyu Islands, the Mariana Islands, the Caroline Islands, Fiji and Samoa. It is a small species of the ‘challengeri’ subgroup, lacking conical spines on cirrus 1 and bearing pectinate setae without basal guards on cirrus 2. It may be a ‘relict’ insular species. Chthamalus challengeri also lacks conical spines on cirrus 1 and has pectinate setae without basal guards on cirrus 2. Records of C. challengeri south of Japan are probably erroneous. However, there is an undescribed species of the ‘challengeri’ subgroup in the Indian Ocean, Indo-Malaya, Vietnam and southern China and yet more may occur in the western Pacific. The subgroups ‘malayensis’ and ‘challengeri’ require genetic investigation. Some comments are included on the arthropodal characters and geographical distributions of Chthamalus antennatus, C. dalli and C. stellatus
Resumo:
Climatic variability on the European Continental Shelf is dominated by events over the North Atlantic Ocean, and in particular by the North Atlantic Oscillation (NAO). The NAO is essentially a winter phenomenon, and its effects will be felt most strongly by populations for which winter conditions are critical. One example is the copepod Calanus finmarchicus, whose northern North Sea populations overwinter at depth in the North Atlantic. Its annual abundance in this region is strongly dependent on water transports at the end of the winter, and hence on the NAO index. Variations in the NAO give rise to changes in the circulation of the North Atlantic Ocean, with additional perturbations arising from El Ni (n) over tildeo - Southern Oscillation (ENSO) events in the Pacific, and these changes can be delayed by several years because of the adjustment time of the ocean circulation. One measure of the circulation is the latitude of the north wall of the Gulf Stream (GSNW index). Interannual variations in the plankton of the Shelf Seas show strong correlations with the fluctuations of the GSNW index, which are the result of Atlantic-wide atmospheric processes. These associations imply that the interannual variations are climatically induced rather than due to natural fluctuations of the marine ecosystem, and that the zooplankton populations have not been significantly affected by anthropogenic processes such as nutrient enrichment or fishing pressure. While the GSNW index represents a response to atmospheric changes over two or more years, the zooplankton populations correlated with it have generation times of a few weeks. The simplest explanation for the associations between the zooplankton and the GSNW index is that the plankton are responding to weather patterns propagating downstream from the Gulf Stream system. It seems that these meteorological processes operate in the spring. Although it has been suggested that there was a regime shift in the North Sea in the late 1980s, examination of the time-series by the cumulative sum (CUSUM) technique shows that any changes in the zooplankton of the central and northern North Sea are consistent with the background climatic variability. The abundance of total copepods increased during this period but this change does not represent a dramatic change in ecosystem processes. It is possible some change may have occurred at the end of the time-series in the years 1997 and 1998.