991 resultados para Independent Eye Movement
Resumo:
Three-dimensional trunk motion. trunk muscle electromyography and intra-abdominal pressure were evaluated to investigate the preparatory control of the trunk associated with voluntary unilateral upper limb movement. The directions of angular motion produced by moments reactive to limb movement in each direction were predicted using a three-dimensional model of the body. Preparatory motion of the trunk occurred in three dimensions in the directions opposite to the reactive moments. Electromyographic recordings from the superficial trunk muscles were consistent with preparatory trunk motion. However, activation of transversus abdominis was inconsistent with control of direction-specific moments acting on the trunk. The results provide evidence that anticipatory postural adjustments result in movements and not simple rigidification of the trunk. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Calls for more male teachers are prevalent in current gender debates in education. A dominant argument in this debate is that boys are often alienated from school because of a lack of male role models in feminised areas of the school curriculum and in primary schools. Little research has investigated male teachers' accounts of their work within feminised environments. Drawing on data collected in two research studies in music education, this paper focuses on accounts given by male teachers about (a) practices adopted specifically to work with boys and (b) the role of the male music teacher. Analysis of these data suggests that some male teachers working in feminised areas of the school curriculum adopt practices which, rather than challenging dominant constructions of masculinity, sometimes reinforce gender stereotypical behaviours in boys. We argue that calls for increasing the number of male teachers in feminised areas of schooling need also to be informed by open discussion of the underlying assumptions about masculinity which teachers themselves bring to their work.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Objective: Recent evidence suggests that cortical activity associated with voluntary movement is relatively shifted from medial to lateral premotor areas in Parkinson's disease. This shift occurs bilaterally even for unilateral responses. It is not clear whether the shift in processing reflects an overall change in movement strategy, thereby involving alternate cortical areas, or reflects a compensatory change whereby, given the appropriate conditions, less impaired cortical areas are able to provide a similar function in compensation for those areas which are more impaired. This issue was examined in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. Methods: Fourteen patients with hemi-Parkinson's disease and 15 age-matched control subjects performed a Go/NoGo finger movement task and the contingent negative variation (CNV) was recorded from 21 scalp positions. Results and conclusions: Maximal CNV amplitudes were found over central medial regions for control subjects, but were shifted more frontally for Parkinson's disease patients, reduced in amplitude over the midline and lateralized towards the side ipsilateral to the greatest basal ganglia impairment. This shift in cortical activity from medial to lateral areas in Parkinson's disease patients appears to reflect a compensatory mechanism operating predominantly on the side of greatest basal ganglia impairment. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Movement-related potentials (MRPs) reflect increasing cortical activity related to the preparation and execution of voluntary movement. Execution and preparatory components may be separated by comparing MRPs recorded from actual and imagined movement. Imagined movement initiates preparatory processes, but not motor execution activity. MRPs are maximal over the supplementary motor area (SMA), an area of the cortex involved in the planning and preparation of movement. The SMA receives input from the basal ganglia, which are affected in Huntington's disease (HD), a hyperkinetic movement disorder. In order to further elucidate the effects of the disorder upon the cortical activity relating to movement, MRPs were recorded from ten HD patients, and ten age-matched controls, whilst they performed and imagined performing a sequential button-pressing task. HD patients produced MRPs of significantly reduced size both for performed and imagined movement. The component relating to movement execution was obtained by subtracting the MRP for imagined movement from the MRP for performed movement, and was found to be normal in HD. The movement preparation component was found by subtracting the MRP found for a control condition of watching the visual cues from the MRP for imagined movement. This preparation component in HD was reduced in early slope, peak amplitude, and post-peak slope. This study therefore reported abnormal MRPs in HD. particularly in terms of the components relating to movement preparation, and this finding may further explain the movement deficits reported in the disease.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
To investigate whether there are gender differences in the bone geometry of the proximal femur during the adolescent years we used an interactive computer program ?Hip Strength Analysis? developed by Beck and associates (Beck et al., Invest Radiol. 1990,25:6-18.) to derive femoral neck geometry parameters from DXA bone scans (Hologic 2000, array mode). We analyzed a longitudinal data-set collected on 70 boys and 68 girls over a seven year period. Distance and velocity curves for height were fitted for each child utilizing a cubic spline procedure and the age of peak height velocity (PHV) was determined. To control for maturational differences between children of the same chronological age and between boys and girls, section modulus (Z) an index of bending strength, cross sectional area of bone (CSA), sub-periosteal width (SPW), and BMD values at the neck and shaft of the proximal femur were determined for points on each individual?s curve at the age of PHV and one and two years on either side of peak. To control for size differences, height and weight were introduced as co-variates in the two-way analyses of variance looking at gender over time measured at the maturational age points (-2, -1, age of PHV, +1, +2). The following figure presents the results of the analyses on two variables, BMD and Z at neck and shaft regions:After the age of peak linear growth (PHV), independent of body size, there was a gender difference in BMD at the shaft but not at the neck. Section modulus at both sites indicated that male bones became significantly stronger after PHV. Underlying these maturational changes, male bones became wider (SPW) after PHV in both the neck and shaft and enclosed more material (CSA) at all maturational age points at both regions. These results call into question the emphasis on using BMD as a measure of skeletal integrity in growing children
Resumo:
Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortical activity prior to self-initiated movements but little activity at early stages prior to movements that are externally cued at unpredictable times. In this study, the spatial location and relative timing of activation for self-initiated and externally triggered movements were examined using rapid event-related functional MRI. Twelve healthy right-handed subjects were imaged while performing a brief finger sequence movement (three rapid alternating button presses: index-middle-index finger) made either in response to an unpredictably timed auditory cue (between 8 to 24 s after the previous movement) or at self-paced irregular intervals. Both movement conditions involved similar strong activation of medial motor areas including the pre-SMA, SMA proper, and rostral cingulate cortex, as well as activation within contralateral primary motor, superior parietal, and insula cortex. Activation within the basal ganglia was found for self-initiated movements only, while externally triggered movements involved additional bilateral activation of primary auditory cortex. Although the level of SMA and cingulate cortex activation did not differ significantly between movement conditions, the timing of the hemodynamic response within the pre-SMA was significantly earlier for self-initiated compared with externally triggered movements. This clearly reflects involvement of the pre-SMA in early processes associated with the preparation for voluntary movement. (C) 2002 Elsevier Science.
Resumo:
Huntington's disease patients perform automatic movements in a bradykinetic manner, somewhat similar to patients with Parkinson's disease. Cortical activity relating to the preparation of movement in Parkinson's disease is significantly improved when a cognitive strategy is used. It is unknown whether patients with Huntington's disease can utilise an attentional strategy, and what effect this strategy would have on the premovement cortical activity. Movement-related potentials were recorded from 12 Huntington's disease patients and controls performing externally cued finger tapping movement, allowing an examination of cortical activity related to movement performance and bradykinesia in this disease. All subjects were tested in two conditions, which differed only by the presence or absence of the cognitive strategy. The Huntington's disease group, unlike controls, did not produce a rising premovement potential in the absence of the strategy. The Huntington's disease group did produce a rising premovement potential for the strategy condition, but the early slope of the potential was significantly reduced compared with the control group's early slope. These results are similar to those found previously with Parkinson's disease patients. The strategy may have put the task, which previously might have been under deficient automatic control, under attentional control. (C) 2002 Movement Disorder Society.
Resumo:
This paper describes the kinematics and muscle activity associated with the standard sit-up, as a first step in the investigation of complex motor coordination. Eight normal human subjects lay on a force table and performed at least 15 sit-ups, with the arms across the chest and the legs straight and unconstrained. Several subjects also performed sit-ups with an additional weight added to the head. Support surface forces were recorded to calculate the location of the center of pressure and center of gravity; conventional motion analysis was used to measure segmental positions; and surface EMG was recorded from eight muscles. While the sit-up consists of two serial components, 'trunk curling' and 'footward pelvic rotation', it can be further subdivided into five phases, based on the kinematics. Phases I and II comprise trunk curling. Phase I consists of neck and upper trunk flexion, and phase II consists of lumbar trunk lifting. Phase II corresponds to the point of peak muscle contraction and maximum postural instability, the 'critical point' of the sit-up. Phases III-V comprise footward pelvic rotation. Phase III begins with pelvic rotation towards the feet. phase W with leg lowering, and phase V with contact between the legs and the support surface. The overall pattern of muscle activity was complex with times of EMG onset, peak activity, offset, and duration differing for different muscles. This complex pattern changed qualitatively from one phase to the next, suggesting that the roles of different muscles and, as a consequence, the overall form of coordination, change during the sit-up. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Physiotherapists frequently use manipulative therapy techniques to treat dysfunction and pain resulting from ankle sprain. This study investigated whether a Mulligan's mobilization with movement (MWM) technique improves talocrural dorsiflexion, a major impairment following ankle sprain, and relieves pain in subacute populations. Fourteen subjects with subacute grade II lateral ankle sprains served as their own control in a repeated measures, double-blind randomized controlled trial that measured the initial effects of the MWM treatment on weight bearing dorsiflexion and pressure and thermal pain threshold. The subacute ankle sprain group studied displayed deficits in dorsiflexion and local pressure pain threshold in the symptomatic ankle. Significant improvements in dorsiflexion occurred initially post-MWM (F-(2,F-26) 7.82, P = 0.002), but no significant changes in pressure or thermal pain threshold were observed after the treatment condition. Results indicate that the MWM treatment for ankle dorsiflexion has a mechanical rather than hypoalgesic effect in subacute ankle sprains. The mechanism by which this occurs requires investigation if we are to better understand the role of manipulative therapy in ankle sprain management. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This article aims to analyse the introduction of environmental issues in the context of the production function, which has been referred to as the organisational area to lead corporate environmental management. With that purpose, the theoretical references for corporate environmental management and the necessary alterations in production function have been organised to include environmental aspects, especially in terms of product and process development, quality management, and logistics. Considering that this research field still lacks empirical evidence for Brazilian companies, four case studies were conducted using companies located in the country. The environmental management maturity level of those companies tends to follow the rate with which the environmental issue is introduced in production sub-areas, especially in the product development process. However, in most cases we found that the companies had difficulties in structuring the insertion of the environmental dimension in logistics. The final notes point out the distance observed between what is recommended by international literature and the reality of Brazilian companies in the challenge of making the production function environmentally friendly.