868 resultados para Increased Oxidative Stress


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programa de Doctorado, Acuicultura: Producción controlada de organismos acuáticos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the possible pathways and the mechanisms that can trigger oxylipins biosynthesis, and particularly that of short chain aldehydes and alcohols, in Lactobacillus helveticus, also in the presence of oxidative stress, using a totally labelled linoleic acid as precursor. In plants and fungi these molecules, involved in defence mechanisms against pathogens and in communication systems, derive from the oxidation of cellular unsaturated fatty acids (UFAs) and their accumulation is associated with stress exposure. Since some oxylipins are produced also by lactobacilli, it is possible to hypothesize that a metabolic pathway from UFAs to oxylipins, similar to what happens in plants and fungi, is present also in lactic acid bacteria. The results obtained pointed out that some volatile molecules are the result of UFAs catabolism, since they appear only when cells are incubated in their presence. Labelled linoleic acid is integrated in the membrane and subsequently transformed into aldehydes and alcohols, whose extent and carbon atoms number depend on stress exposure. The enzymes responsible for this metabolic pathway in plants and fungi (e.g. lipoxygenase, dioxygenase) seem to be absent in Lactobacillus helveticus and in other lactobacilli. Proteomic analyses show the over expression of many proteins, including thioredoxin reductase (part of the bacterial oxidative defence system), mainly in cells grown with linoleic acid without oxidative stress exposure, confirming that linoleic acid itself induces oxidative stress. 6 general oxidoreductases (class including dioxygenases and peroxidase) were found and therefore a deeper investigation on them could be productive in elucidating all steps involved in oxylipins biosynthesis in bacteria. Due to the multiple role of oxylipins (flavouring agents, antimicrobial compounds and interspecific signalling molecules) the identification of genes involved and regulating factors should have an important biotechnological impact, also allowing the overproduction of selected bioactive molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aseptic loosening of metal implants is mainly attributed to the formation of metal degradation products. These include particulate debris and corrosion products, such as metal ions (anodic half-reaction) and ROS (cathodic half-reaction). While numerous clinical studies describe various adverse effects of metal degradation products, detailed knowledge of metal-induced cellular reactions, which might be important for possible therapeutic intervention, is not comprehensive. Since endothelial cells are involved in inflammation and angiogenesis, two processes which are critical for wound healing and integration of metal implants, the effects of different metal alloys and their degradation products on these cells were investigated. Endothelial cells on Ti6Al4V alloy showed signs of oxidative stress, which was similar to the response of endothelial cells to cathodic partial reaction of corrosion induced directly on Ti6Al4V surfaces. Furthermore, oxidative stress on Ti6Al4V alloy reduced the pro-inflammatory stimulation of endothelial cells by TNF-α and LPS. Oxidative stress and other stress-related responses were observed in endothelial cells in contact with Co28Cr6Mo alloy. Importantly, these features could be reduced by coating Co28Cr6Mo with a TiO2 layer, thus favouring the use of such surface modification in the development of medical devices for orthopaedic surgery. The reaction of endothelial cells to Co28Cr6Mo alloy was partially similar to the effects exerted by Co2+, which is known to be released from metal implants. Co2+ also induced ROS formation and DNA damage in endothelial cells. This correlated with p53 and p21 up-regulation, indicating the possibility of cell cycle arrest. Since CoCl2 is used as an hypoxia-mimicking agent, HIF-1α-dependence of cellular responses to Co2+ was studied in comparison to anoxia-induced effects. Although important HIF-1α-dependent genes were identified, a more detailed analysis of microarray data will be required to provide additional information about the mechanisms of Co2+ action. All these reactions of endothelial cells to metal degradation products might play their role in the complex processes taking place in the body following metal device implantation. In the worst case this can lead to aseptic loosening of the implant and requirement for revision surgery. Knowledge of molecular mechanisms of metal-induced responses will hopefully provide the possibility to interfere with undesirable processes at the implant/tissue interface, thus extending the life-time of the implant and the overall success of metal implant applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedreich’s Ataxia (FRDA) is a neurodegenerative disorder caused by a deficiency of the protein frataxin and characterized by oxidative stress. The first aim of my research project was to analyze the effects of tocotrienol in FRDA patients. Patients received for 2 months a low dose of tocotrienol. A number of biochemical parameters related to oxidative stress were studied. We consistently showed that taking for 2 months a low dose of tocotrienol led to the decrease of oxidative stress indexes in FRDA patients. Also, this study provides a suitable model to investigate the efficacy of natural compounds to counteract the oxidative stress in FRDA. Furthermore, we investigated whether the tocotrienol was able to modulate the expression of the frataxin isoforms (FXN-1, FXN -2, FXN-3) in FRDA patients. We demonstrated that tocotrienol leads to a specific and significant increase of FXN-3 expression. As no structural and functional details were available for FNX-2 and FXN-3, 3D-models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms. The second aim of my research project was to investigate the role of a single nucleotide polymorphism (SNP) in the protein Sirtuin 6 in FRDA patients. In fact, it was known that those who harbour a SNP (Asn46/Ser46) in the gene enconding Sirt6 show a better outcome those individuals who are homozygous for the Asn 46 allele. We found that fibroblasts and iPSC-derived neurons from FRDA patients harboring the SNP (Asn46/Ser46) have a reduced amount of Sirt6 protein compared to cells from individuals who are homozygous for the prevalent Asn allele. Our studies provide new information on the role of Sirtuins in FRDA pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results reported in this Thesis contribute to the comprehension of the complicated world of “redox biology”. ROS regulate signalling pathways both in physiological responses and in pathogenesis and progression of diseases. In cancer cells, the increase in ROS generation from metabolic abnormalities and oncogenic signalling may trigger a redox adaptation response, leading to an up-regulation of antioxidant capacity in order to maintain the ROS level below the toxic threshold. Thus, cancer cells would be more dependent on the antioxidant system and more vulnerable to further oxidative stress induced by exogenous ROS-generating agents or compounds that inhibit the antioxidant system. Results here reported indicate that the development of new drugs targeting specific Nox isoforms, responsible for intracellular ROS generation, or AQP isoforms, involved in the transport of extracellular H2O2 toward intracellular targets, might be an interesting novel anti-leukaemia strategy. Furthermore, also the use of CSD peptide, which simulate the VEGFR-2 segregation into caveolae in the inactive form, might be a strategy to stop the cellular response to VEGF signalling. As above stated, in the understanding of the redox biology, it is also important to identify and distinguish the molecular effectors that maintain normal biological and physiological responses, such as agents that stimulate our adaptation systems and elevate our endogenous antioxidant defences or other protective systems. Data here reported indicate that the nutraceutical compound sulforaphane and the Klotho protein are able to stimulate the HO-1 and Prx-1 expression, as well as the GSH levels, confirming their antioxidant and protective role. Finally, results here reported demonstrated that Stevia extracts are involved in insulin regulated glucose metabolism, suggesting that the use of these compounds goes beyond their sweetening power and may also offer therapeutic benefits hence improving the quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aquafeed use of raw plant materials, as protein and lipid sources, has been considered and approved as a sustainable alternative to fish products (fish meal and oils) because the current trend to use high-lipid diets has been shown to induce undesirable increase in fat depots or further physiological alterations, such as induction of oxidative stress. In the aquaculture perspective, the addition of natural substances with antioxidant properties is an emerging strategy for protecting biological systems and foodstuffs from oxidative damage. Among natural substances, hydroxytyrosol (HT) and caffeic acid (CA) have attracted considerable attention as food antioxidant additives and modulators of physiological and molecular pathways involved in energy metabolism and adiposity. The aim of this study was to evaluate the effects of CA and HT on lipid metabolism and oxidative stress of rainbow trout (Oncorhynchus mykiss). In vitro results showed the potential anti-obesogenic effects of the compounds CA and HT on the adipose tissue of the rainbow trout. To support these data, in vitro assays performed (MTT, ORO, immunofluorescence) resulted in accordance among them; only results from proliferating cell nuclear antigen (PCNA) assay were not significant. In vivo results showed a possible anti-obesogenic effect of CA in liver and HT in adipose tissue. Regarding oxidative stress, we could hypothesize a possible anti-oxidant role of CA in liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevention of coronary artery disease (CAD) and reduction of its mortality and morbidity remains a major public health challenge throughout the "Western world". Recent evidence supports the concept that the impairment of endothelial function, a hallmark of insulin resistance states, is an upstream event in the pathophysiology of insulin resistance and its main corollaries: atherosclerosis and myocardial infarction. Atherosclerosis is currently thought to be the consequence of a subtle imbalance between pro- and anti-oxidants that produces favourable conditions for lesion progression towards acute thrombotic complications and clinical events. Over the last decade, a remarkable burst of evidence has accumulated, offering the new perspective that bioavailable nitric oxide (NO) plays a pivotal role throughout the CAD-spectrum, from its genesis to the outcome after acute events. Vascular NO is a critical modulator of coronary blood flow by inhibiting smooth muscle contraction and platelet aggregation. It also acts in angiogenesis and cytoprotection. Defective endothelial nitric oxide synthase (eNOS) driven NO synthesis causes development of major cardiovascular risk factors (insulin resistance, arterial hypertension and dyslipidaemia) in mice, and characterises CAD-prone insulin-resistant humans. On the other hand, stimulation of inducible nitric oxide synthase (iNOS) and NO overproduction causes metabolic insulin resistance and characterises atherosclerosis, heart failure and cardiogenic shock in humans, suggesting a "Yin-Yang" effect of NO in the cardiovascular homeostasis. Here, we will present a concise overview of the evidence for this novel concept, providing the conceptual framework for developing a potential therapeutic strategy to prevent and treat CAD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However, glutathione peroxidase 1 (GPx1) over-expression is protective to the neonatal mouse brain with HI injury. To further test the hypothesis that an adequate supply of GPx is critical to protection from HI injury, we crossed SOD1 over-expressing mice (hSOD-tg) with GPx1 over-expressing mice (hGPx-tg). Resulting litters contained wild-type (wt), hGPx-tg, hSOD-tg and hybrid hGPx-tg/hSOD-tg pups, which were subjected to HI at P7. Confirming previous results, the hGPx-tg mice had reduced injury compared to both Wt and hSOD-tg littermates. Neonatal mice over-expressing both GPx1 and SOD1 also had less injury compared to wt or hSOD-tg alone. A result of oxidative stress after neonatal HI is a decrease in the concentration of reduced (i.e. antioxidant-active) glutathione (GSH). In this study, we tested the effect of systemic administration of alpha-lipoic acid on levels of GSH in the cortex after HI. Although GSH levels were restored by 24h after HI, injury was not reduced compared to vehicle-treated mice. We also tested two other pharmacological approaches to reducing oxidative stress in hSOD-tg and wild-type littermates. Both the specific inhibitor of neuronal nitric oxide synthase, 7-nitroindazole (7NI), and the spin-trapping agent alpha-phenyl-tert-butyl-nitrone (PBN) did not reduce HI injury, however. Taken together, these results imply that H2O2 is a critical component of neonatal HI injury, and GPx1 plays an important role in the defense against this H2O2 and is thereby neuroprotective.