926 resultados para Illinois. Energy Efficiency Trust Fund Program.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente studio si colloca all’interno di una ricerca più ampia volta alla definizione di criteri progettuali finalizzati all’ottimizzazione delle prestazioni energetiche delle cantine di aziende vitivinicole, di dimensioni produttive medio - piccole. Nello specifico la ricerca riguarda la riqualificazione di fabbricati rurali esistenti di modeste dimensioni, da convertire a magazzini per la conservazione del vino in bottiglia. Lo studio si pone come obiettivo la definizione di criteri di analisi per la valutazione di interventi di retrofit di tali fabbricati, volto sia al miglioramento delle prestazioni energetiche dell’involucro edilizio, sia alla riduzione del fabbisogno energetico legato al funzionamento di eventuali impianti di controllo termico. La ricerca è stata condotta mediante l’utilizzo del software di simulazione termica Energy Plus, per ottenere i valori simulati di temperatura interna relativi ai diversi scenari migliorativi ipotizzati, e mediante la successiva definizione di indicatori che esplicitino l’influenza delle principali variabili progettuali sull’andamento delle temperature interne dei locali di conservazione e sul fabbisogno energetico del fabbricato necessario a garantire l’intervallo di temperatura di comfort del vino. Tra tutti gli interventi possibili per il miglioramento della prestazione energetica degli edifici, quelli analizzati in questo studio prevedono l’aggiunta di un isolamento a cappotto delle pareti esterne, l’isolamento della copertura e l’aggiunta di una struttura ombreggiante vegetale esterna. I risultati ottenuti danno una prima indicazione sugli interventi più efficaci in termini di miglioramento energetico e mettono in luce l’utilità del criterio proposto nell’evidenziare le criticità degli interventi migliorativi ipotizzati. Il metodo definito nella presente ricerca risulta quindi un valido strumento di valutazione a supporto della progettazione degli interventi di retrofit dei fabbricati rurali da convertire a magazzini per la conservazione del vino.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency has become an important research topic in intralogistics. Especially in this field the focus is placed on automated storage and retrieval systems (AS/RS) utilizing stacker cranes as these systems are widespread and consume a significant portion of the total energy demand of intralogistical systems. Numerical simulation models were developed to calculate the energy demand rather precisely for discrete single and dual command cycles. Unfortunately these simulation models are not suitable to perform fast calculations to determine a mean energy demand value of a complete storage aisle. For this purpose analytical approaches would be more convenient but until now analytical approaches only deliver results for certain configurations. In particular, for commonly used stacker cranes equipped with an intermediate circuit connection within their drive configuration there is no analytical approach available to calculate the mean energy demand. This article should address this research gap and present a calculation approach which enables planners to quickly calculate the energy demand of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread deployment of wireless mobile communications enables an almost permanent usage of portable devices, which imposes high demands on the battery of these devices. Indeed, battery lifetime is becoming one the most critical factors on the end-users satisfaction when using wireless communications. In this work, the optimized power save algorithm for continuous media applications (OPAMA) is proposed, aiming at enhancing the energy efficiency on end-users devices. By combining the application specific requirements with data aggregation techniques, {OPAMA} improves the standard {IEEE} 802.11 legacy Power Save Mode (PSM) performance. The algorithm uses the feedback on the end-user expected quality to establish a proper tradeoff between energy consumption and application performance. {OPAMA} was assessed in the OMNeT++ simulator, using real traces of variable bitrate video streaming applications, and in a real testbed employing a novel methodology intended to perform an accurate evaluation concerning video Quality of Experience (QoE) perceived by the end-users. The results revealed the {OPAMA} capability to enhance energy efficiency without degrading the end-user observed QoE, achieving savings up to 44 when compared with the {IEEE} 802.11 legacy PSM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Centre for Development and Environment (CDE) has been contracted by the World Bank Group to conduct a program on capacity development in use of geospatial tools for natural resource management in Tajikistan. The program aimed to help improving natural resource management by fostering the use of geospatial tools among governmental and non-governmental institutions in Tajikistan. For this purpose a database including a Geographic Information System (GIS) has been prepared, which combines spatial data on various sectors for case study analysis related to the Community Agriculture and Watershed Management Project (CAWMP). The inception report is based on the findings resulting from the Swiss Consultant Trust Fund (CTF) financed project, specifically on the experiences from the awareness creation and training workshop conducted in Dushanbe in November 2007 and the analysis of historical land degradation trends carried out for the four CAWMP watersheds. Furthermore, also recommendations from the inception mission of CDE to Tajikistan (5-20 August 2007) and the inception report for the Swiss CTF support were considered. The inception report for the BNWPP project (The Bank-Netherlands Water Partnership Program) discusses the following project relevant issues: (1) Preliminary list of additional data layers, types of data analysis, and audiences to be covered by BNWPP grant (2) Assessing skills and equipment already available within Tajikistan, and implications for training program and specific equipment procurement plans (3) Updated detailed schedule and plans for all activities to be financed by BNWPP grant, and (4) Proposed list of contents for the final report and web-based presentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In developing economies, consumption of electricity in residential and commercial sectors increased with economic development. In order to identify the factors for effective facilitation of standard and labeling programs, this article explores factors that affect consumer choice to energy-efficient products. Main findings are as follows: (1)Consumers in Thailand shows the highest awareness to environmental friendly concepts, followed by India and China.(2) Chosen labeled products include air-conditioners, TVs, refrigerators and washing machines, but not some popular products such as ceiling fans, electric fans or mobile phones. (3) Consumer who has higher energy conservation perception will buy energy efficient products.(4) Consumers in China, India and Thailand are sensitive to energy efficiency of products, primarily because they lead to less expenditure on electricity. (5) Labeling works to make levels of the energy efficiency of products more visible and thus helped consumers to choose the products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the energy consumption and subsequent CO2 emissions of road highway transportation under three toll systems in Spain for four categories of vehicles: cars, vans, buses and articulated trucks. The influence of toll systems is tested for a section of AP-41 highway between Toledo and Madrid. One system is free flow, other is traditional stop and go and the last toll system operates with an electronic toll collection (ETC) technology. Energy consumption and CO2 emissions were found to be closely related to vehicle mass, wind exposure, engine efficiency and acceleration rate. These parameters affect, directly or indirectly, the external forces which determine the energy consumption. Reducing the magnitude of these forces through an appropriate toll management is an important way of improving the energy performance of vehicles. The type of toll system used can have a major influence on the energy efficiency of highway transportation and therefore it is necessary to consider free flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells and cogeneration and tri generation systems. In order to propel this technological development discussed where the hydrogen plays a key role as energy storage and renewable energy, the National Centre of Hydrogen and Fuel Cell Technology Experimentation in Spain equipped with installations that enable scientific and technological design, develop, verify, certify, approve, test, measure and, more importantly, the facility ensures continuous operation for 24 hours a day, 365 days year. At the same time, the system is scalable so as to allow continuous adaptation of new technologies are developed and incorporated into the assembly to verify integration at the same time it checks the validity of their development. The transformation sector can be said to be the heart of the system, because without neglecting the other sectors, this should prove the validity of hydrogen as a carrier - energy storage are important efforts that have to do to demonstrate the suitability of fuel cells or internal combustion systems to realize the energy stored in hydrogen at prices competitive with conventional systems. The multiple roles to meet the fuel cells under different conditions of operation require to cover their operating conditions, many different sizes and applications. The fourth area focuses on integration is an essential complement within the installation. We must integrate not only the electricity produced, but also hydrogen is used and the heat generated in the process of using hydrogen energy. The energy management in its three forms: hydrogen chemical, electrical and thermal integration requires complicated and require a logic and artificial intelligence extremes to ensure maximum energy efficiency at the same time optimum utilization is achieved. Verification of the development and approval in the entire production system and, ultimately, as a demonstrator set to facilitate the simultaneous evolution of production technology, storage and distribution of hydrogen fuel cells has been assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mejora en la eficiencia energética y la reducción de la tasa de fallos en los contactos lubricados son aspectos que resultan de gran interés en numerosos sectores de la industria, y plantean en estos momentos nuevas dificultades operativas y retos para un futuro próximo. Los avances tecnológicos han incrementado las exigencias técnicas que se requieren a los aceites para cumplir su función al extender sus variables operativas a un mayor espectro de aplicaciones, tanto de condiciones de funcionamiento como a la gran variedad de nuevos materiales constitutivos de los engranajes en los que se tiene que utilizar. Por ello, actualmente se está incentivado el desarrollo de nuevos procedimientos que permitan comprender el comportamiento de este tipo de contactos lubricados, con el fin de lograr mejoras técnicas en su diseño y la correcta selección del aceite. En esta Tesis Doctoral se presenta una metodología de cálculo numérico que permite simular el comportamiento de contactos elastohidrodinámicos (EHD) puntuales, como puede ser el caso de un rodamiento. La resolución de este problema presenta diversas complejidades matemáticas y exige el desarrollo de un elaborado procedimiento de cálculo basado en técnicas multinivel. Para hacer del procedimiento una herramienta válida en un gran número de condiciones de funcionamiento y tipos de lubricantes, se ha tenido en cuenta en el cálculo la posible aparición de comportamientos no-Newtonianos del lubricante y fenómenos de generación y disipación de calor, provocados por el movimiento relativo del fluido y las superficies en contacto. Para la validación del procedimiento, se han contrastado los resultados numéricos obtenidos con nuestro método, con los resultados numéricos y experimentales publicados por otros autores y con valores experimentales propios medidos en un equipo de ensayo de contacto puntual tipo MTM. El desarrollo de este programa ha dotado a la División de Ingeniería de Máquinas de una herramienta que ha permitido, y sobre todo va permitir, evaluar la importancia de cada uno de los parámetros reológicos en los diferentes problemas que va a tener que abordar, evaluación que hasta el momento se realizaba con métodos aproximados que describen la fenomenología con mucha menos precisión. A la hora de emplear nuestro procedimiento numérico para simular situaciones reales, nos hemos encontrado con el obstáculo de que es muy complicado encontrar, en la bibliografía y bases de datos, los parámetros que caracterizan el comportamiento reológico del lubricante en las condiciones de presión, temperatura y grado de cizallamiento habituales en las que se trabaja en este tipo de contactos, y las pocas medidas que existen para estas condiciones de funcionamiento son poco fiables. Por ello como complemento al objetivo principal de esta Tesis hemos desarrollado una metodología para caracterizar los lubricantes en estas condiciones extremas. Dicha metodología está basada en la buena descripción que hace nuestro programa del coeficiente de fricción, lo que nos ha permitido obtener los parámetros reológicos del III lubricante a partir de las medidas experimentales del coeficiente de fricción generado en un equipo MTM lubricado con el lubricante que se desea caracterizar. Madrid, Octubre de 2012 IV Improving energy efficiency and reducing the failure rate in lubricated contacts are issues that are of great interest in many sectors of industry, and right now posed operational difficulties and new challenges for the near future. Technological advances have increased the technical demands required to oils to fulfil its role by extending its operational variables to a wider range of applications, both operating conditions and to the wide variety of new materials which constitute the gear in which must be used. For this reason, has being encouraged currently to develop new procedures to understand the behaviour of this type of lubricated contacts, in order to achieve improvements in design techniques and the correct oil selection. In this Thesis we present a numerical methodology to simulate the puntual elastohydrodynamic contact behaviour (EHD), such as a roller bearing. The resolution of this problem presents various mathematical complexities and requires the development of an elaborate calculation procedure based on multilevel techniques. To make the procedure a valid tool in a wide range of operating conditions and types of lubricants, has been taken into account in calculating the possible occurrence of non-Newtonian behaviour of the lubricant and phenomena of generation and dissipation of heat, caused by the fluid relative motion and contacting surfaces. For the validation of the method, we have compared the numerical results obtained with our method with numerical and experimental results published by other authors also with own experimental values measured on point-contact test equipment MTM. The development of this program has provided the Machines Engineering Division of a tool that has allowed, and especially will allow to evaluate the importance of each of the rheological parameters on the various problems that will have to be addressed, evaluation performed hitherto described methods that phenomenology approximated with much less accuracy. When using our numerical procedure to simulate real situations we have encountered the obstacle that is very difficult to find, in the literature and database, parameters characterizing the rheological behaviour of the lubricant in the usual conditions of pressure, temperature and shear rate in which you work in this type of contact, and the few measures that exist for these operating conditions are unreliable. Thus in addition to the main objective of this thesis, we have developed a methodology to characterize the lubricants in these extreme conditions. This methodology is based on the good description, which makes our program, of the coefficient of friction, that allowed us to obtain the lubricant rheological parameters from experimental measurements of the friction coefficient generated on lubricated MTM equipment with the lubricant to be characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with expected shortages. Many of its current policies and strategies are aimed at the improvement and possible maximization of energy production from the renewable sector. It is also clear that while energy-conservation and energy-efficiency can make an important contribution in the national energy strategy, renewable energies will be essential to the solution and are likely to play an increasingly important role for the growth of grid power, providing energy access, reducing consumption of fossil fuels, and helping India pursue its low carbon progressive pathway. However, most of the states in India, like the northernmost State of Jammu and Kashmir (J&K), have experienced an energy crisis over a sustained period of time. As India intends to be one of the emerging powers of the 21st century, it has to embark upon with these pressing issues in a more sustainable manner and accordingly initiate various renewable energy projects within these states. This paper will provide a broad-spectrum view about the energy situation within J&K and will highlight the current policies along with future strategies for the optimal utilization of renewable energy resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport is responsible for 41% of CO2 emissions in Spain, and around 65% of that figure is due to road traffic. Tolled motorways are currently managed according to economic criteria: minimizing operational costs and maximizing revenues from tolls. Within this framework, this paper develops a new methodology for managing motorways based on a target of maximum energy efficiency. It includes technological and demand-driven policies, which are applied to two case studies. Various conclusions emerge from this study. One is, that the use of intelligent payment systems is recommended; and another, is that the most sustainable policy would involve defining the most efficient strategy for each motorway section, including the maximum use of its capacity, the toll level which attracts the most vehicles, and the optimum speed limit for each type of vehicle.