910 resultados para INTELLIGENT TRANSPORT SYSTEMS
Resumo:
This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution of this article is the development of a numerically efficient and memory saving moving window KPCA (MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and eigenvectors of the Gram matrix. The article shows that the proposed MWKPCA algorithm has a computation complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation of the number of retained components and an l-step ahead application of the MWKPCA monitoring model, the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-varying system and recorded data from an industrial distillation column.
Resumo:
This paper examines the applicability of a digital manufacturing framework to the implementation of a Value Driven Design (VDD) approach for the development of a stiffened composite panel. It presents a means by which environmental considerations can be integrated with conventional product and process design drivers within a customized, digital environment. A composite forming process is used as an exemplar for the work which creates a collaborative environment for the integration of more traditional design drivers with parameters related to manufacturability as well as more sustainable processes and products. The environmental stakeholder is introduced to the VDD process through a customized product/process/resource (PPR) environment where application specific power consumption and material waste data has been measured and characterised in the process design interface. This allows the manufacturing planner to consider power consumption as a concurrent design driver and the inclusion of energy as a parameter in a VDD approach to the development of efficiently manufactured, sustainable transport systems.
Resumo:
Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate-and low-moisture foods. © 2013, American Society for Microbiology.
Resumo:
The REsearch on a CRuiser Enabled Air Transport Environment (RECREATE) project is considers the introduction and airworthiness of cruiser-feeder operations for civil aircraft. Cruiser-feeder operations are investigated as a promising pioneering idea for the air transport of the future. The soundness of the concept of cruiser-feeder operations for civil aircraft can be understood, taking air-to-air refueling operations as an example. For this example, a comprehensive estimate of the benefits can be made, which shows a fuel burn reduction potential and a CO2 emission reduction of 31% for a typical 6000 nautical miles flight with a payload of 250 passengers. This reduction potential is known to be large by any standard. The top level objective of the RECREATE project is to demonstrate on a preliminary design level that cruiser-feeder operations (as a concept to reduce fuel burn and CO2 emission levels) can be shown to comply with the airworthiness requirements for civil aircraft. The underlying Scientific and Technological (S&T) objectives are to determine and study airworthy operational concepts for cruiser-feeder operations, and to derive and quantify benefits in terms of CO2 emission reduction but also other benefits.
Work Package (WP) 3 has the objective to substantiate the assumed benefits of the cruiser/feeder operations through refined analysis and simulation. In this report, initial benefits evaluation of the initial RECREATE cruiser/feeder concepts is presented. The benefits analysis is conducted in delta mode, i.e. comparison is made with a baseline system. Since comparing different aircraft and air transport systems is never a trivial task, appropriate measures and metrics are defined and selected first. Non-dimensional parameters are defined and values for the baseline system derived.
The impact of cruiser/feeder operations such as air-to-air refueling are studied with respect to fuel-burn (or carbon-dioxide), noise and congestion. For this purpose, traffic simulations have been conducted.
Cruiser/feeder operations will have an impact on dispatch reliability as well. An initial assessment of the effect on dispatch reliability has been made and is reported.
Finally, a considerable effort has been made to create the infrastructure for economic delta analysis of the cruiser/feeder concept of operation. First results of the cost analysis have been obtained.
Resumo:
Many graph datasets are labelled with discrete and numeric attributes. Most frequent substructure discovery algorithms ignore numeric attributes; in this paper we show how they can be used to improve search performance and discrimination. Our thesis is that the most descriptive substructures are those which are normative both in terms of their structure and in terms of their numeric values. We explore the relationship between graph structure and the distribution of attribute values and propose an outlier-detection step, which is used as a constraint during substructure discovery. By pruning anomalous vertices and edges, more weight is given to the most descriptive substructures. Our method is applicable to multi-dimensional numeric attributes; we outline how it can be extended for high-dimensional data. We support our findings with experiments on transaction graphs and single large graphs from the domains of physical building security and digital forensics, measuring the effect on runtime, memory requirements and coverage of discovered patterns, relative to the unconstrained approach.
Resumo:
In many CCTV and sensor network based intelligent surveillance systems, a number of attributes or criteria are used to individually evaluate the degree of potential threat of a suspect. The outcomes for these attributes are in general from analytical algorithms where data are often pervaded with uncertainty and incompleteness. As a result, such individual threat evaluations are often inconsistent, and individual evaluations can change as time elapses. Therefore, integrating heterogeneous threat evaluations with temporal influence to obtain a better overall evaluation is a challenging issue. So far, this issue has rarely be considered by existing event reasoning frameworks under uncertainty in sensor network based surveillance. In this paper, we first propose a weighted aggregation operator based on a set of principles that constraints the fusion of individual threat evaluations. Then, we propose a method to integrate the temporal influence on threat evaluation changes. Finally, we demonstrate the usefulness of our system with a decision support event modeling framework using an airport security surveillance scenario.