938 resultados para INDUCED OXIDATIVE DAMAGE
Resumo:
To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respiration inhibition and marked sensitization of the mitochondrial permeability transition pore. Mitochondria from heterozygous mice, with a partial deficiency in MnSOD, showed evidence of increased proton leak, inhibition of respiration, and early and rapid accumulation of mitochondrial oxidative damage. Furthermore, chronic oxidative stress in the heterozygous mice resulted in an increased sensitization of the mitochondrial permeability transition pore and the premature induction of apoptosis, which presumably eliminates the cells with damaged mitochondria. Mice with normal MnSOD levels show the same age-related mitochondrial decline as the heterozygotes but occurring later in life. The premature decline in mitochondrial function in the heterozygote was associated with the compensatory up-regulation of oxidative phosphorylation enzyme activity. Thus mitochondrial reactive oxygen species production, oxidative stress, functional decline, and the initiation of apoptosis appear to be central components of the aging process.
Resumo:
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.
Resumo:
Predicted highly expressed (PHX) and putative alien genes determined by codon usages are characterized in the genome of Deinococcus radiodurans (strain R1). Deinococcus radiodurans (DEIRA) can survive very high doses of ionizing radiation that are lethal to virtually all other organisms. It has been argued that DEIRA is endowed with enhanced repair systems that provide protection and stability. However, predicted expression levels of DNA repair proteins with the exception of RecA tend to be low and do not distinguish DEIRA from other prokaryotes. In this paper, the capability of DEIRA to resist extreme doses of ionizing and UV radiation is attributed to an unusually high number of PHX chaperone/degradation, protease, and detoxification genes. Explicitly, compared with all current complete prokaryotic genomes, DEIRA contains the greatest number of PHX detoxification and protease proteins. Other sources of environmental protection against severe conditions of UV radiation, desiccation, and thermal effects for DEIRA are the several S-layer (surface structure) PHX proteins. The top PHX gene of DEIRA is the multifunctional tricarboxylic acid (TCA) gene aconitase, which, apart from its role in respiration, also alerts the cell to oxidative damage.
Resumo:
UV irradiation interferes with the induction of T cell-mediated immune responses, in part by causing cells in the skin to produce immunoregulatory cytokines. Recent evidence implicates UV-induced DNA damage as a trigger for the cascade of events leading to systemic immune suppression in vivo. However, to date, there has been no direct evidence linking DNA damage and cytokine production in UV-irradiated cells. Here we provide such evidence by showing that treatment of UV-irradiated murine keratinocytes in vitro with liposomal T4 endonuclease V, which accelerates the repair of cyclobutylpyrimidine dimers in these cells, inhibits their production of immunosuppressive cytokines, including interleukin 10. Application of these liposomes to murine skin in vivo also reduced the induction of interleukin 10 by UV irradiation, whereas liposomes containing heat-inactivated T4 endonuclease V were ineffective. These results support our hypothesis that unrepaired DNA damage in the skin activates the production of cytokines that down-regulate immune responses initiated at distant sites.
Resumo:
The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either beta-cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.
Resumo:
There is growing evidence that oxidative stress and mitochondrial respiratory failure with attendant decrease in energy output are implicated in nigral neuronal death in Parkinson disease (PD). It is not known, however, which cellular elements (neurons or glial cells) are major targets of oxygen-mediated damage. 4-Hydroxy-2-nonenal (HNE) was shown earlier to react with proteins to form stable adducts that can be used as markers of oxidative stress-induced cellular damage. We report here results of immunochemical studies using polyclonal antibodies directed against HNE-protein conjugates to label the site of oxidative damage in control subjects (ages 18-99 years) and seven patients that died of PD (ages 57-78 years). All the nigral melanized neurons in one of the midbrain sections were counted and classified into three groups according to the intensity of immunostaining for HNE-modified proteins--i.e., no staining, weak staining, and intensely positive staining. On average, 58% of nigral neurons were positively stained for HNE-modified proteins in PD; in contrast only 9% of nigral neurons were positive in the control subjects; the difference was statistically significant (Mann-Whitney U test; P < 0.01). In contrast to the substantia nigra, the oculomotor neurons in the same midbrain sections showed no or only weak staining for HNE-modified proteins in both PD and control subjects; young control subjects did not show any immunostaining; however, aged control subjects showed weak staining in the oculomotor nucleus, suggesting age-related accumulation of HNE-modified proteins in the neuron. Our results indicate the presence of oxidative stress within nigral neurons in PD, and this oxidative stress may contribute to nigral cell death.
Resumo:
The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage.
Resumo:
Although the ability of UV irradiation to induce pigmentation in vivo and in vitro is well documented, the intracellular signals that trigger this response are poorly understood. We have recently shown that increasing DNA repair after irradiation enhances UV-induced melanization. Moreover, addition of small DNA fragments, particularly thymine dinucleotides (pTpT), selected to mimic sequences excised during the repair of UV-induced DNA photoproducts, to unirradiated pigment cells in vitro or to guinea pig skin in vivo induces a pigment response indistinguishable from UV-induced tanning. Here we present further evidence that DNA damage and/or the repair of this damage increases melanization. (i) Treatment with the restriction enzyme Pvu II or the DNA-damaging chemical agents methyl methanesulfonate (MMS) or 4-nitroquinoline 1-oxide (4-NQO) produces a 4- to 10-fold increase in melanin content in Cloudman S91 murine melanoma cells and an up to 70% increase in normal human melanocytes, (ii) UV irradiation, MMS, and pTpT all upregulate the mRNA level for tyrosinase, the rate-limiting enzyme in melanin biosynthesis. (iii) Treatment with pTpT or MMS increases the response of S91 cells to melanocyte-stimulating hormone (MSH) and increases the binding of MSH to its cell surface receptor, as has been reported for UV irradiation. Together, these data suggest that UV-induced DNA damage and/or the repair of this damage is an important signal in the pigmentation response to UV irradiation. Because Pvu II acts exclusively on DNA and because MMS and 4-NQO, at the concentrations used, primarily interact with DNA, such a stimulus alone appears sufficient to induce melanogenesis. Of possible practical importance, the dinucleotide pTpT mimics most, if not all, of the effects of UV irradiation on pigmentation, tyrosinase mRNA regulation, and response to MSH without the requirement for antecedent DNA damage.
Resumo:
We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypoglycemia. Microinfusion of GT vectors into the rat hippocampus also reduces kainic acid-induced seizure damage in the CA3 cell field. Furthermore, delivery of the vector even after onset of the seizure is protective, suggesting that HSV-mediated gene transfer for neuroprotection need not be carried out in anticipation of neurologic crises. Using the bicistronic vector v alpha 22 beta gal alpha 4GT, which coexpresses both GT and the Escherichia coli lacZ marker gene, we further demonstrate an inverse correlation between the extent of vector expression in the dentate and the amount of CA3 damage resulting from the simultaneous delivery of kainic acid.
Resumo:
Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.
Resumo:
Parkinson’s disease (PD) is frequently associated with gastrointestinal (GI) symptoms, mostly represented by abdominal distension, constipation and defecatory dysfunctions. Despite GI dysfunctions have a major impact on the clinical picture of PD, there is currently a lack of information on the neurochemical, pathological and functional correlates of GI dysmotility associated with PD. Moreover, there is a need of effective and safe pharmacological therapies for managing GI disturbances in PD patients. The present research project has been undertaken to investigate the relationships between PD and related GI dysfunctions by means of investigations in an animal model of PD induced by intranigral injection of 6-hydroxydopamine (6-OHDA). The use of the 6-OHDA experimental model of PD in the present program has allowed to pursue the following goals: 1) to examine the impact of central dopaminergic denervation on colonic excitatory cholinergic and tachykininergic neuromotility by means of molecular, histomorphologic and functional approaches; 2) to elucidate the role of gut inflammation in the onset and progression of colonic dysmotility associated with PD, characterizing the degree of inflammation and oxidative damage in colonic tissues, as well as identifying the immune cells involved in the production of pro-inflammatory cytokines in the gut; 3) to evaluate the impact of chronic treatment with L-DOPA plus benserazide on colonic neuromuscular activity both in control and PD animals. The results suggest that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory cholinergic neurotransmission and an enhanced tachykininergic control, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate. These motor alterations might result from the occurrence of a condition of gut inflammation associated with central intranigral denervation. The treatment with L-DOPA/BE following central dopaminergic neurodegeneration can restore colonic motility, likely through a normalization of the cholinergic enteric neurotransmission, and it can also improve the colonic inflammation associated with central dopaminergic denervation.
Resumo:
O objetivo do presente estudo foi avaliar a atividade antioxidante de extrato de folhas de oliveira (EFO) (Olea europaea L.) por diferentes metodologias analíticas in vitro e in situ, para verificação de efeito em sistemas biológicos. O extrato foi obtido a partir de folhas secas de oliveira, previamente micronizadas, em metanol/água (80/20%) na proporção 1:20 (m/v), após remoção de compostos solúveis em n-hexano. Após liofilização, no EFO foi avaliado o poder redutor por Folin-Ciocalteau, conteúdo de flavonoides totais, teor de oleuropeina, poder de redução do íon férrico (FRAP) e atividade antioxidante sobre DPPHo, ABTSo+, ânion superóxido (O2o-), ácido hipocloroso (HOCl) e óxido nítrico (NOo). O extrato foi também avaliado quanto ao efeito protetor sobre danos oxidativos em eritrócitos humanos. O ácido ascórbico foi utilizado como referência. O experimento foi repetido seis vezes (n = 6) e os ensaios realizados em duplicata. O poder redutor do extrato e o conteúdo de flavonoides totais e oleuropeína foram 131,7 ± 9,4 mg equivalente de ácido gálico/g extrato seco (ms), 19,4 ± 1,3 mg equivalente de quercetina/g ms e 25,5 ± 5,2 mg oleuropeína/g ms, respectivamente. O ensaio de FRAP apresentou 281,8 ± 22,8 mg equivalente de trolox/g ms. O EFO foi efetivo na inibição dos radicais DPPHo e ABTSo+, dependente da concentração de extrato, com valores de IC50 de 13,8 ± 0,8 e 16,1 ± 1,2 µg/mL, respectivamente. Com relação à atividade antioxidante sobre espécies reativas de importância biológica, o EFO apresentou forte capacidade de inibição de O2o- (IC50 = 52,6 ± 2,1 µg/mL) e NOo (IC50 = 48,4 ± 6,8 µg/mL), quando comparado ao ácido ascórbico. Porém, a inibição de HOCl não foi tão eficiente (IC50 = 714,1 ± 31,4 µg/mL). O EFO inibiu a hemólise induzida em eritrócitos de maneira dependente da concentração (IC50 = 7,8 ± 1,1 µg/mL), assim como a peroxidação lipídica e a formação de meta-hemoglobina, com valores de IC50 de 38,0 ± 11,7 e 186,3 ± 29,7 µg/mL, respectivamente. Os resultados obtidos neste estudo sugerem que extrato de folhas de oliveira possui efetiva atividade antioxidante em sistemas biológicos, pelo efeito sequestrador de determinadas espécies reativas que participam dos processos bioquímicos, e pela prevenção de danos oxidativos em eritrócitos humanos. Portanto, sua ingestão pode estar relacionada com a prevenção de estresse oxidativo in vivo, com consequentes benefícios à saúde.
Resumo:
Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.
Resumo:
The prevalence of fatty liver is rising in association with the global increase in obesity and type 2 diabetes. In the past, simple steatosis was regarded as benign, but the presence of another liver disease may provide a synergistic combination of steatosis, cellular adaptation, and oxidative damage that aggravates liver injury. In this review, a major focus is on the role of steatosis as a co-factor in chronic hepatitis C (HCV), where the mechanisms promoting fibrosis and the effect of weight reduction in minimizing liver injury have been most widely studied. Steatosis, obesity, and associated metabolic factors may also modulate the response to alcohol- and drug-induced liver disease and may be risk factors for the development of hepatocellular cancer. The pathogenesis of injury in obesity-related fatty liver disease involves a number of pathways, which are currently under investigation. Enhanced oxidative stress, increased susceptibility to apoptosis, and a dysregulated response to cellular injury have been implicated, and other components of the metabolic syndrome such as hyperinsulinernia and hyperglycemia are likely to have a role. Fibrosis also may be increased as a by-product of altered hepatocyte regeneration and activation of bipotential hepatic progenitor cells. In conclusion, active management of obesity and a reduction in steatosis may improve liver injury and decrease the progression of fibrosis.
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: ( 1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running ( - 10% gradient) at 60% VO2 max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E-2, leukotriene B-4 and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P< 0.05) after all three trials. Plasma prostaglandin E-2 concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B4 did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher ( P< 0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage.