895 resultados para IN SITU STUDY
Resumo:
The objective of this study was to estimate the regressions calibration for the dietary data that were measured using the quantitative food frequency questionnaire (QFFQ) in the Natural History of HPV Infection in Men: the HIM Study in Brazil. A sample of 98 individuals from the HIM study answered one QFFQ and three 24-hour recalls (24HR) at interviews. The calibration was performed using linear regression analysis in which the 24HR was the dependent variable and the QFFQ was the independent variable. Age, body mass index, physical activity, income and schooling were used as adjustment variables in the models. The geometric means between the 24HR and the calibration-corrected QFFQ were statistically equal. The dispersion graphs between the instruments demonstrate increased correlation after making the correction, although there is greater dispersion of the points with worse explanatory power of the models. Identification of the regressions calibration for the dietary data of the HIM study will make it possible to estimate the effect of the diet on HPV infection, corrected for the measurement error of the QFFQ.
Resumo:
Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.
Resumo:
Objective: The aim of the present study was to compare the in vitro effects of the Er:YAG laser, an ultrasonic system, and manual curette on dentine root surface by roughness and micro-morphological analysis. Materials and Methods: Thirty-six flattened bovine roots were randomly assigned to one of the following groups: group 1 (n = 12): Er: YAG laser ( 2940 nm), 120 mJ/pulse, 10 Hz, 8.4 J/cm(2); group 2 ( n = 12): ultrasonic system; and group 3 ( n = 12): manual curette. The mean surface roughness (Ra) of each sample was measured using a profilometer before and after the treatments. The micro-morphology of the treated and untreated ( control) root surfaces was evaluated with scanning electron microscopy (SEM) at 50 x and 1000 x magnification. Results: Analysis with the profilometer showed that for equal times of instrumentation, the smoothest surfaces were produced by the Er: YAG laser and the ultrasonic system, followed by the curette ( p < 0.05). Morphological analyses demonstrated that treatment with the Er: YAG laser produced some areas with an irregular surface, craters, and ablation of the intertubular dentin. The smear layer was removed and dentine tubules were opened by both curettes and the ultrasonic system. The micro-morphology of the dentine root surface after ultrasonic treatment, however, demonstrated randomly distributed areas cratering. Conclusion: All instruments increased the roughness of the dentine root surface after treatment; however, the curette produced rougher surfaces than the other devices. SEM analysis revealed distinct root surface profiles produced by the three devices.
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.
Resumo:
Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Resumo:
A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup. (C) 2011 American Institute of Physics. [doi:10.1063/1.3571301]
Resumo:
The free H(2)xspa ligands [xspa = pspa, Clpspa, tspa or fspa where p = 3-(phenyl), Clp = 3-(2-chlorophenyl), t = 3-(2-thienyl), f = 3-(2-furyl) and spa = 2-sulfanylpropenoato], their Zn(II) complexes of formula [HQ](2)[Zn(xspa)(2)] (HQ=diisopropylammonium) and the Cd(II) equivalents were prepared and characterized by elemental analysis and by IR, Raman and NMR ((1)H, (13)C) spectroscopy. X-Ray studies of the crystal structures of [HQ](2)[Zn(pspa)(2)], [HQ](2)[Zn(Clpspa)2], [HQ](2)[Zn(tspa)(2)] and [HQ](2)[Zn(fspa)(2)] show that the zinc atom is coordinated to two O atoms and two S atoms of the ligands in a distorted tetrahedral ZnO(2)S(2) environment. In the structures of [HQ](2)[Cd(pspa)(2)] and [HQ](2)[Cd(Clpspa)(2)] the cadmium atom is coordinated to three S atoms and two carboxylato O atoms of the ligands in a distorted trigonal bipyramidal environment. The interchange of ligands between Zn( II) and Cd( II) was studied by (113)Cd NMR spectroscopy. The in vitro protective effect of H(2)xspa and their Zn( II) complexes against Cd toxicity was investigated using the human hepatocarcinoma HepG2 cell line and the pig renal proximal tubule LLC-PK1 cell line. The incorporation of Zn( II) was found to be relevant in the case of H(2)pspa, with an increase observed in the cell viability of the LCC-PK1 cells with respect to the value for the free ligand.
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.
Resumo:
Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011
Resumo:
This paper presents the results of the in-depth study of the Barkhausen effect signal properties for the plastically deformed Fe-2%Si samples. The investigated samples have been deformed by cold rolling up to plastic strain epsilon(p) = 8%. The first approach consisted of time-domain-resolved pulse and frequency analysis of the Barkhausen noise signals whereas the complementary study consisted of the time-resolved pulse count analysis as well as a total pulse count. The latter included determination of time distribution of pulses for different threshold voltage levels as well as the total pulse count as a function of both the amplitude and the duration time of the pulses. The obtained results suggest that the observed increase in the Barkhausen noise signal intensity as a function of deformation level is mainly due to the increase in the number of bigger pulses.
Resumo:
Mitochondrial DNA (mtDNA) analysis has proved useful for forensic identification especially in cases where nuclear DNA is not available, such as with hair evidence. Heteroplasmy, the presence of more than one type of mtDNA in one individual, is a common situation often reported in the first and second mtDNA hypervariable regions (HV1/HV2), particularly in hair samples. However, there is no data about heteroplasmy frequency in the third mtDNA hypervariable region (HV3). To investigate possible heteroplasmy hotspots, HV3 from hair and blood samples of 100 individuals were sequenced and compared. No point heteroplasmy was observed, but length heteroplasmy was, both in C-stretch and CA repeat. To observe which CA ""alleles"" were present in each tissue, PCR products were cloned and re-sequenced. However, no variation among CA alleles was observed. Regarding forensic practice, we conclude that point heteroplasmy in HV3 is not as frequent as in the HV1/HV2.
Resumo:
The aim of the present work was to obtain an ophthalmic delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the treatment of ocular diseases. For this, an in situ forming gel comprised of the combination of a thermosetting polymer, poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO, poloxamer), with a mucoadhesive agent (chitosan) was developed. Different polymer ratios were evaluated by oscillatory rheology, texture and mucoadhesive profiles. Scintigraphy studies in humans were conduced to verify the retention time of the formulations developed. The results showed that chitosan improves the mechanical strength and texture properties of poloxamer formulations and also confers mucoadhesive properties in a concentration-dependent manner. After a 10-min instillation of the poloxamer/chitosan 16:1 formulation in human eyes, 50-60% of the gel was still in contact with the cornea surface, which represents a fourfold increased retention in comparison with a conventional solution. Therefore, the developed formulation presented adequate mechanical and sensorial properties and remained in contact with the eye surface for a prolonged time. In conclusion, the in situ forming gel comprised of poloxamer/chitosan is a promising tool for the topical treatment of ocular diseases. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In situ gelatin zymography is a technique, which utilises a gelatin-based emulsion overlay to detect and, more importantly, localise the gelatinase activity in underlying tissue. Gelatinase A [matrix metalloproteinase-2 (MMP-2)] and gelatinase B [matrix metalloproteinase-9 (MMP-9)] are present in equine hoof homogenates and supernatants from cultured hoof explants by SDS-PAGE gelatin zymography, and it has been assumed that the enzymes are derived solely from matrix and epithelia and not from other sources such as leucocytes. Using in situ zymography, gelatinases are shown to be localised within the equine epidermal hoof lamellae and, more specifically, are apparently produced by epidermal basal and/or parabasal cells. The pattern of expression correlates with that expected based on the progression of pathological changes observed during the onset of laminitis, thus providing further evidence that laminitis pathology probably arises as a result of inadequate local MMP regulation.