965 resultados para IL-10-DEFICIENT MICE
Resumo:
INTRODUCTION: Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood - in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). METHODS: We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1-219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. RESULTS: Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. CONCLUSION: Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.
Resumo:
IL-28 (IFN-λ) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-γ. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28Rα(-/-) mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c(+) dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-γ(-/-) mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c(+) cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c(+) DC function in experimental allergic asthma. →See accompanying Closeup by Michael R Edwards and Sebastian L Johnston http://dx.doi.org/10.1002/emmm.201100143.
Resumo:
BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.
Resumo:
The lpr gene has recently been shown to encode a functional mutation in the Fas receptor, a molecule involved in transducing apoptotic signals. Mice homozygous for the lpr gene develop an autoimmune syndrome accompanied by massive accumulation of double-negative (DN) CD4-8-B220+ T cell receptor-alpha/beta+ cells. In order to investigate the origin of these DN T cells, we derived lpr/lpr mice lacking major histocompatibility complex (MHC) class I molecules by intercrossing them with beta 2-microglobulin (beta 2m)-deficient mice. Interestingly, these lpr beta 2m-/- mice develop 13-fold fewer DNT cells in lymph nodes as compared to lpr/lpr wild-type (lprWT) mice. Analysis of anti-DNA antibodies and rheumatoid factor in serum demonstrates that lpr beta 2m-/- mice produce comparable levels of autoantibodies to lprWT mice. Collectively our data indicate that MHC class I molecules control the development of DN T cells but not autoantibody production in lpr/lpr mice and support the hypothesis that the majority of DN T cells may be derived from cells of the CD8 lineage.
Resumo:
Inflammatory bowel diseases are commonly complicated by weight and bone loss. We hypothesized that IL-15, a pro-inflammatory cytokine expressed in colitis and an osteoclastogenic factor, could play a central role in systemic and skeletal complications of inflammatory bowel diseases. We evaluated the effects of an IL-15 antagonist, CRB-15, in mice with chronic colitis induced by oral 2% dextran sulfate sodium for 1 week, followed by another 1% for 2 weeks. During the last 2 weeks, mice were treated daily with CRB-15 or an IgG2a control antibody. Intestinal inflammation, disease severity, and bone parameters were evaluated at days 14 and 21. CRB-15 improved survival, early weight loss, and colitis clinical score, although colon damage and inflammation were prevented in only half the survivors. CRB-15 also delayed loss of femur bone mineral density and trabecular microarchitecture. Bone loss was characterized by decreased bone formation, but increased bone marrow osteoclast progenitors and osteoclast numbers on bone surfaces. CRB-15 prevented the suppression of osteoblastic markers of bone formation, and reduced osteoclast progenitors at day 14, but not later. However, by day 21, CRB-15 decreased tumor necrosis factor α and increased IL-10 expression in bone, paralleling a reduction of osteoclasts. These results delineate the role of IL-15 on the systemic and skeletal manifestations of chronic colitis and provide a proof-of-concept for future therapeutic developments.
Resumo:
Polymorphonuclear neutrophils (PMN) are key components of the inflammatory response contributing to the development of pathogen-specific immune responses. Following infection with Leishmania major, neutrophils are recruited within hours to the site of parasite inoculation. C57BL/6 mice are resistant to infection, and BALB/c mice are susceptible to infection, developing unhealing, inflammatory lesions. In this report, we investigated the expression of cell surface integrins, TLRs, and the secretion of immunomodulatory cytokines by PMN of both strains of mice, in response to infection with L. major. The parasite was shown to induce CD49d expression in BALB/c-inflammatory PMN, and expression of CD49d remained at basal levels in C57BL/6 PMN. Equally high levels of CD11b were expressed on PMN from both strains. In response to L. major infection, the levels of TLR2, TLR7, and TLR9 mRNA were significantly higher in C57BL/6 than in BALB/c PMN. C57BL/6 PMN secreted biologically active IL-12p70 and IL-10. In contrast, L. major-infected BALB/c PMN transcribed and secreted high levels of IL-12p40 but did not secrete biologically active IL-12p70. Furthermore, IL-12p40 was shown not to associate with IL-23 p19 but formed IL-12p40 homodimers with inhibitory activity. No IL-10 was secreted by BALB/c PMN. Thus, following infection with L. major, in C57BL/6 mice, PMN could constitute one of the earliest sources of IL-12, and in BALB/c mice, secretion of IL-12p40 could contribute to impaired, early IL-12 signaling. These distinct PMN phenotypes may thus influence the development of L. major-specific immune response.
Resumo:
Summary : The purpose of this study was to investigate the role of the inflammasome in human and experimental murine models (such as ΑΙΑ and K/BxN) of rheumatoid arthritis (RA)RA, affecting 1% of the population is the most frequent inflammatory disease characterized by synovial hyperplasia and cartilage and bone erosion, leading to joint destruction. In general, women are 3 times more affected by RA suggesting a role of estrogen in this disease. The inflammasome is a multiproteic complex triggering the activation of caspase-1 leading to the activation of IL-1 β, an important pro-inflammatory cytokine implicated in arthritis. The inflammasome has been implicated in several inflammatory diseases and particularly in gout. To highlight a possible role of the inflammasome in murine arthritis, we obtained ASC, caspase-1 and NALP3 +/+ and -/- littermate mice to perform ΑΙΑ and K/BxN arthritis. NALP3 -/- and caspase-1 -/- mice were as arthritic as wild type littermate mice in both ΑΙΑ and K/BxN models implicating that the NALP3 inflammasome is not involved in experimental arthritis. By contrast, ΑΙΑ severity was significantly diminished in ASC- deficient male and female mice, and in the K/BxN model, in ASC-deficient female mice. These results were supported by histological scoring and acute phase protein serum amyloid A (SAA) levels that were equivalent between NALP+/+ and NALP3-/- mice and diminished in ASC -/- mice. In ΑΙΑ and K/BxN murine experimental models, we observed a sexdependent phenotype. We studied the role of estradiol in both the ALA and the K/BxN models. Castrated female or male ASC -/- mice that received estradiol had a decreased arthritis severity. This implies a protective role of estrogen in the absence of ASC. In the ΑΙΑ model, proliferation assay were performed using splenocytes from mBSA- immunized ASC +/+ and -/- mice. The mBSA-induced proliferation was significantly lower in ASC-/- splenocytes. Moreover the CD3-specific proliferation of purified splenic Τ cells was significantly lower in ASC-/- cells. Finally, Τ cells from ASC-/- mice produced significantly decreased levels of IFN-gamma associated with increased levels of IL-10. These results imply a possible role of ASC in the TCR-signaling pathway and Τ cell cytokine production. In parallel the expression of the different inflammasome components were analyzed in biopsies from rheumatoid arthritis (RA) and osteoarthritis (OA) patiens. The expression of the 14 different NALPs, their effector protein ASC, and caspase-1 and -5 was readily measurable by RT-PCR in a similar proportion in RA and OA synovial samples, with the exception of NALP-5 and NALP-13, which weren't found in samples from either disease. The corresponding NALP1, -3, -12 and ASC proteins were expressed at similar levels in both OA and RA biopsies, as determined by immunohistochemistry and Western-blot analysis. By contrast, caspase-1 levels were significantly enhanced in RA synovial tissues compared to those from OA patients. NALP-1, -2, -3, -10, -12 and -14, as well as ASC, caspase-1, and -5 were detected in RNA from unstimulated and stimulated RA synoviocytes. In FLS, only ASC and caspase-1 were expressed at the protein level. NALP1, 3 and 12 were not detected. However, upon stimulation, no secreted IL-Ιβ was detectable in either RA or in OA synoviocytes culture medium. Résumé : Le but de ce projet était d'étudier le rôle de l'inflammasome dans des modèles expérimentaux d'arthrite tels que les modèles ΑΙΑ et K/BxN ainsi que dans la polyarthrite humaine (RA). La polyarthrite est une maladie inflammatoire très fréquente avec 1 % de la population affectée et touche 3 fois plus les femmes que les hommes, suggérant un rôle des hormones sexuelles dans cette pathologie. L'inflammasome est un complexe multiprotéique qui permet l'activation de la caspase-1, une cystéine protéase qui va ensuite cliver et activer rinterleukine-ΐβ (IL-Ιβ). L'inflammasome a été impliqué ces dernières années dans de nombreuses maladies inflammatoires notamment dans la goutte. Pour mettre en évidence un éventuel rôle de l'inflammasome dans l'arthrite expérimentale nous avons obtenu des souris déficientes pour certains des composants de l'inflammasome tels que ASC, NALP3 et caspase-1. Les souris NALP3 déficientes et caspase-1 déficientes sont aussi arthritiques que les souris wild type correspondantes que ce soit dans le modèle ΑΙΑ ou K/BxN. Par contre les souris mâles et femelles ASC-déficientes sont moins arthritiques que les souris +/+ correspondantes dans le modèle ΑΙΑ. Dans le modèle KRN, le même phénotype (diminution de la sévérité de l'arthrite) est observé uniquement chez les femelles ASC-/- Ce phénotype est corrélé avec l'histologie ainsi qu'avec le dosage du serum amyloid A (SAA) qui reflète l'inflammation systémique et qui est diminué chez les souris ASC-déficientes. Nous avons ensuite étudié le rôle de Γ estradiol (une des formes active des estrogènes) dans les modèles K/BxN et ΑΙΑ. Les souris castrées maies ou femelles déficientes pour ASC ayant reçu de l'estradiol ont une arthrite moins sévère ce qui implique que les estradiol ont un effet protecteur en l'absence de ASC. Dans le modèle ΑΙΑ, nous nous sommes aussi intéressés à la réponse immune. Des tests de prolifération ont été effectués sur des splénocytes en présence de mBSA (qui est l'antigène utilisé dans le modèle ΑΙΑ). Les splénocytes ASC -/- ont une proliferation qui est diminuée en présence de l'antigène. De plus la proliferation de cellules Τ spléniques purifiées en présence d'anti-CD3 est diminuée chez les cellules Τ ASC-/-. Ces résultats nous indiquent une éventuelle implication de ASC dans la signalisation par le récépteur des cellules T. En parallèle l'expression des différents composants de l'inflammasome a été analysée dans des biopsies de patients atteints de polyarthrite rhumatoide (RA) et d'arthrose (OA). L'expression des 14 différents NALPs, de l'adaptateur ASC, ainsi que des caspase-1 et -5 était similaires dans les échantillons RA et OA, à l'exception de NALP5 et 13 qui n'étaient pas détéctables. L'expression protéique de NALP1, 3, 12 et ASC effectuée par Western blot et immunohistochimie était similaire dans les biopsies RA et OA. Par contre la quantité de la caspase-1 mesurée par ELISA était augmentée de façon significative dans les extraits protéiques de biopsies RA. NALP-1, -2. -3, -10, -12, and -14 ainsi que ASC, caspase-1 et -5 étaient exprimés de façon similaire par les synoviocytes RA non stimulés et stimulés. Dans les synoviocytes seuls ASC et caspase-1 étaient détéctable au niveau protéique. NALP-1, -3 et -12 n'était pas détéctables. Cependant après stimulation il n'y avait d'IL-Ιβ sécrété que ce soit dans les surnageants de cultures de synoviocytes RA ou OA.
Resumo:
Signal transducer and activator of transcription (STAT)-3 inhibitors play an important role in regulating immune responses. Galiellalactone (GL) is a fungal secondary metabolite known to interfere with the binding of phosphorylated signal transducer and activator of transcription (pSTAT)-3 as well of pSTAT-6 dimers to their target DNA in vitro. Intra nasal delivery of 50 μg GL into the lung of naive Balb/c mice induced FoxP3 expression locally and IL-10 production and IL-12p40 in RNA expression in the airways in vivo. In a murine model of allergic asthma, GL significantly suppressed the cardinal features of asthma, such as airway hyperresponsiveness, eosinophilia and mucus production, after sensitization and subsequent challenge with ovalbumin (OVA). These changes resulted in induction of IL-12p70 and IL-10 production by lung CD11c(+) dendritic cells (DCs) accompanied by an increase of IL-3 receptor α chain and indoleamine-2,3-dioxygenase expression in these cells. Furthermore, GL inhibited IL-4 production in T-bet-deficient CD4(+) T cells and down-regulated the suppressor of cytokine signaling-3 (SOCS-3), also in the absence of STAT-3 in T cells, in the lung in a murine model of asthma. In addition, we found reduced amounts of pSTAT-5 in the lung of GL-treated mice that correlated with decreased release of IL-2 by lung OVA-specific CD4(+) T cells after treatment with GL in vitro also in the absence of T-bet. Thus, GL treatment in vivo and in vitro emerges as a novel therapeutic approach for allergic asthma by modulating lung DC phenotype and function resulting in a protective response via CD4(+)FoxP3(+) regulatory T cells locally.
Resumo:
In a murine model of allergic asthma, we found that Tyk-2((-/-)) asthmatic mice have induced peribronchial collagen deposition, mucosal type mast cells in the lung, IRF4 and hyperproliferative lung Th2 CD4(+) effector T cells over-expressing IL-3, IL-4, IL-5, IL-10 and IL-13. We also observed increased Th9 cells expressing IL-9 and IL-10 as well as T helper cells expressing IL-6, IL-10 and IL-21 with a defect in IL-17A and IL-17F production. This T helper phenotype was accompanied by increased SOCS3 in the lung of Tyk-2 deficient asthmatic mice. Finally, in vivo treatment with rIL-17A inhibited local CD4(+)CD25(+)Foxp3(+) T regulatory cells as well as Th2 cytokines without affecting IL-9 in the lung. These results suggest a role of Tyk-2 in different subsets of T helper cells mediated by SOCS3 regulation that is relevant for the treatment of asthma, cancer and autoimmune diseases.
Resumo:
Interleukin-10 (IL-10) has been reported to inhibit nitric oxide (NO) synthesis and microbicidal activity of interferon-gamma (IFN-gamma)-stimulated macrophages (M phi) by preventing the secretion of tumor necrosis factor-alpha (TNF-alpha) which serves as an autocrine activating signal. We have examined the effects of recombinant IL-10 on the capacity of IFN-gamma together with exogenous TNF-alpha to induce NO synthesis by bone marrow-derived M phi. Under these conditions and in contrast to its reported deactivating potential, IL-10 strongly enhanced NO synthesis measured as nitrite (NO2-) release (half maximal stimulation at approximately 10 U/ml). IL-10 further increased NO2- production by M phi stimulated in the presence of optimal concentrations of prostaglandin E2, a positive modulator of M phi activation by IFN-gamma/TNF-alpha. Increased steady state levels of NO synthase mRNA were observed in 4-h IFN-gamma/TNF-alpha cultures and enhanced NO2(-)-release was evident 24 h but not 48 h after stimulation. These results suggest that the effects of IL-10 on M phi function are more complex than previously recognized.
Resumo:
Background: Inflammasome activation with the production of IL-1 beta received substantial attention recently in inflammatory diseases. However, the role of inflammasome in the pathogenesis of asthma is not clear. Using an adjuvant-free model of allergic lung inflammation induced by ovalbumin (OVA), we investigated the role of NLRP3 inflammasome and related it to IL-1R1 signaling pathway.Methods: Allergic lung inflammation induced by OVA was evaluated in vivo in mice deficient in NLRP3 inflammasome, IL-1R1, IL-1 beta or IL-1 alpha. Eosinophil recruitment, Th2 cytokine, and chemokine levels were determined in bronchoalveolar lavage fluid, lung homogenates, and mediastinal lymph node cells ex vivo.Results: Allergic airway inflammation depends on NLRP3 inflammasome activation. Dendritic cell recruitment into lymph nodes, Th2 lymphocyte activation in the lung and secretion of Th2 cytokines and chemokines are reduced in the absence of NLRP3. Absence of NLRP3 and IL-1 beta is associated with reduced expression of other proinflammatory cytokines such as IL-5, IL-13, IL-33, and thymic stromal lymphopoietin. Furthermore, the critical role of IL-1R1 signaling in allergic inflammation is confirmed in IL-1R1-, IL-1 beta-, and IL-1 alpha-deficient mice.Conclusion: NLRP3 inflammasome activation leading to IL-1 production is critical for the induction of a Th2 inflammatory allergic response.
Resumo:
As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL-1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence-associated RD1 locus of MTB. However, Nlrp3-deficient mice controlled pulmonary TB, a feature correlated with NLRP3-independent production of IL-1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX-1-dependent manner. However, during TB, MTB promotes NLRP3- and caspase-1-independent IL-1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.
Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF.
Resumo:
Because IL-1beta plays an important role in inflammation in human and murine arthritis, we investigated the contribution of the inflammasome components ASC, NALP-3, IPAF, and caspase-1 to inflammatory arthritis. We first studied the phenotype of ASC-deficient and wild-type mice during Ag-induced arthritis (AIA). ASC(-/-) mice showed reduced severity of AIA, decreased levels of synovial IL-1beta, and diminished serum amyloid A levels. In contrast, mice deficient in NALP-3, IPAF, or caspase-1 did not show any alteration of joint inflammation, thus indicating that ASC associated effects on AIA are independent of the classical NALP-3 or IPAF inflammasomes. Because ASC is a ubiquitous cytoplasmic protein that has been implicated in multiple cellular processes, we explored other pathways through which ASC may modulate inflammation. Ag-specific proliferation of lymph node and spleen cells from ASC-deficient mice was significantly decreased in vitro, as was the production of IFN-gamma, whereas IL-10 production was enhanced. TCR ligation by anti-CD3 Abs in the presence or absence of anti-CD28 Abs induced a reduction in T cell proliferation in ASC(-/-) T cells compared with wild-type ones. In vivo lymph node cell proliferation was also significantly decreased in ASC(-/-) mice, but no effects on apoptosis were observed either in vitro or in vivo in these mice. In conclusion, these results strongly suggest that ASC modulates joint inflammation in AIA through its effects on cell-mediated immune responses but not via its implication in inflammasome formation.
Resumo:
BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.
Resumo:
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.