942 resultados para Homogeneous fluids
Resumo:
The effect of the direction of external electric field on the shear stress of an ER fluid has been studied by molecular-dynamics simulation. Due to the formation of inclined chains, the shear stress strongly depends on the direction of the field, and it may be very large under some special field direction. And theoretical model of ideal microstructure of ER fluids has proved this result. Thus the ER effect may be greatly enhanced just by choosing an optimum direction for the field without any additional requirement, suggesting a promising way to the practical application of ER fluids.
Resumo:
It is often assumed on the basis of single-parcel energetics that compressible effects and conversions with internal energy are negligible whenever typical displacements of fluid parcels are small relative to the scale height of the fluid (defined as the ratio of the squared speed of sound over gravitational acceleration). This paper shows that the above approach is flawed, however, and that a correct assessment of compressible effects and internal energy conversions requires considering the energetics of at least two parcels, or more generally, of mass conserving parcel re-arrangements. As a consequence, it is shown that it is the adiabatic lapse rate and its derivative with respect to pressure, rather than the scale height, which controls the relative importance of compressible effects and internal energy conversions when considering the global energy budget of a stratied fluid. Only when mass conservation is properly accounted for is it possible to explain why available internal energy can account for up to 40 percent of the total available potential energy in the oceans. This is considerably larger than the prediction of single-parcel energetics, according to which this number should be no more than about 2 percent.
Resumo:
An extensive experimental and simulation study is carried out in conventional magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron particles having different sizes in Newtonian carriers. Apparent yield stress data are reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 3.31, which for a log-normal distribution corresponds to the standard deviation ranging from to . These results demonstrate that the effect of polydispersity is negligible in this range in spite of exhibiting very different microstructures. Experimental data in the magnetic saturation regime are in quantitative good agreement with particle-level simulations under the assumption of dipolar magnetostatic forces. The insensitivity of the yield stresses to the polydispersity can be understood from the interplay between the particle cluster size distribution and the packing density of particles inside the clusters.
Resumo:
In this paper, we consider some non-homogeneous Poisson models to estimate the probability that an air quality standard is exceeded a given number of times in a time interval of interest. We assume that the number of exceedances occurs according to a non-homogeneous Poisson process (NHPP). This Poisson process has rate function lambda(t), t >= 0, which depends on some parameters that must be estimated. We take into account two cases of rate functions: the Weibull and the Goel-Okumoto. We consider models with and without change-points. When the presence of change-points is assumed, we may have the presence of either one, two or three change-points, depending of the data set. The parameters of the rate functions are estimated using a Gibbs sampling algorithm. Results are applied to ozone data provided by the Mexico City monitoring network. In a first instance, we assume that there are no change-points present. Depending on the adjustment of the model, we assume the presence of either one, two or three change-points. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
In this paper we prove an existence result for local and global isometric immersions of semi-Riemannian surfaces into the three dimensional Heisenberg group endowed with a homogeneous left-invariant Lorentzian metric. As a corollary, we prove a rigidity result for such immersions.
Resumo:
In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We propose a discontinuous-Galerkin-based immersed boundary method for elasticity problems. The resulting numerical scheme does not require boundary fitting meshes and avoids boundary locking by switching the elements intersected by the boundary to a discontinuous Galerkin approximation. Special emphasis is placed on the construction of a method that retains an optimal convergence rate in the presence of non-homogeneous essential and natural boundary conditions. The role of each one of the approximations introduced is illustrated by analyzing an analog problem in one spatial dimension. Finally, extensive two- and three-dimensional numerical experiments on linear and nonlinear elasticity problems verify that the proposed method leads to optimal convergence rates under combinations of essential and natural boundary conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.
Resumo:
Background: Photodynamic therapy is mainly used for treatment of malignant lesions, and is based on selective location of a photosensitizer in the tumor tissue, followed by light at wavelengths matching the photosensitizer absorption spectrum. In molecular oxygen presence, reactive oxygen species are generated, inducing cells to die. One of the limitations of photodynamic therapy is the variability of photosensitizer concentration observed in systemically photosensitized tissues, mainly due to differences of the tissue architecture, cell lines, and pharmacokinetics. This study aim was to demonstrate the spatial distribution of a hematoporphyrin derivative, Photogem(R), in the healthy liver tissue of Wistar rats via fluorescence spectroscopy, and to understand its implications on photodynamic response. Methods: Fifteen male Wistar rats were intravenously photosensitized with 1.5 mg/kg body weight of Photogem(R). Laser-induced fluorescence spectroscopy at 532nm-excitation was performed on ex vivo liver slices. The influence of photosensitizer surface distribution detected by fluorescence and the induced depth of necrosis were investigated in five animals. Results: Photosensitizer distribution on rat liver showed to be greatly non-homogeneous. This may affect photodynamic therapy response as shown in the results of depth of necrosis. Conclusions: As a consequence of these results, this study suggests that photosensitizer surface spatial distribution should be taken into account in photodynamic therapy dosimetry, as this will help to better predict clinical results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Spin polarization is a key characteristic in developing spintronic devices. Diluted magnetic heterostructures (DMH), where subsequent layers of conventional and diluted magnetic semiconductors (DMS) are alternate, are one of the possible ways to obtain it. Si being the basis of modern electronics, Si or other group-IV DMH can be used to build spintronic devices directly integrated with conventional ones. In this work we study the physical properties and the spin-polarization effects of p-type DMH based in group-IV semiconductors (Si, Ge, SiGe, and SiC), by performing self-consistent (k) over right arrow . (p) over right arrow calculations in the local spin density approximation. We show that high spin polarization can be maintained in these structures below certain values of the carrier concentrations. Full spin polarization is attained in the low carrier concentration regime for carrier concentrations in the DMS layer up to similar to 2.0 x 10(19) cm(-3) for Si and up to similar to 6.0 x 10(19) cm(-3) for SiC. Partial, but still important spin polarization can be achieved for all studied group-IV DMH, with the exception of Ge for carrier concentrations up to 6.0 x 10(19) cm(-3). The role played by the effective masses and the energy splitting of the spin-orbit split-off hole bands is also discussed throughout the paper.
Resumo:
The Pinguino deposit, located in the low sulfidation epithermal metallogenetical province of the Deseado Massif, Patagonia, Argentina, represents a distinct deposit type in the region. It evolved through two different mineralization events: an early In-bearing polymetallic event that introduced In, Zn, Pb, Ag, Cd, Au, As, Cu, Sn, W and Bi represented by complex sulfide mineralogy, and a late Ag-Au quartz-rich vein type that crosscut and overprints the early polymetallic mineralization. The indium-bearing polymetallic mineralization developed in three stages: an early Cu-Au-In-As-Sn-W-Bi stage (Ps(1)), a Zn-Pb-Ag-In-Cd-Sb stage (Ps(2)) and a late Zn-In-Cd (Ps(3)). Indium concentrations in the polymetallic veins show a wide range (3.4 to 1,184 ppm In). The highest indium values (up to 1,184 ppm) relate to the Ps(2) mineralization stage, and are associated with Fe-rich sphalerites, although significant In enrichment (up to 159 ppm) is also present in the Ps(1) paragenesis associated with Sn-minerals (ferrokesterite and cassiterite). The hydrothermal alteration associated with the polymetallic mineralization is characterized by advanced argillic alteration within the immediate vein zone, and sericitic alteration enveloping the vein zone. Fluid inclusion studies indicate homogenisation temperatures of 308.2-327A degrees C for Ps(1) and 255-312.4A degrees C for Ps(2), and low to moderate salinities (2 to 5 eq.wt.% NaCl and 4 to 9 eq.wt.% NaCl, respectively). delta(34)S values of sulfide minerals (+0.76aEuro degrees to +3.61aEuro degrees) indicate a possible magmatic source for the sulfur in the polymetallic mineralization while Pb isotope ratios for the sulfides and magmatic rocks ((206)Pb/(204)Pb, (207)Pb/(204)Pb and (208)Pb/(204)Pb ratios of 17.379 to 18.502; 15.588 to 15.730 and 38.234 to 38.756, respectively) are consistent with the possibility that the Pb reservoirs for both had the same crustal source. Spatial relationships, hydrothermal alteration styles, S and Pb isotopic data suggest a probable genetic relation between the polymetallic mineralization and dioritic intrusions that could have been the source of metals and hydrothermal fluids. Mineralization paragenesis, alteration mineralogy, geochemical signatures, fluid inclusion data and isotopic data, confirm that the In-bearing polymetallic mineralization from Pinguino deposit is a distinct type, in comparison with the well-known epithermal low sulfidation mineralization from the Deseado Massif.
Resumo:
Turkestanite, a rare Th- and REE-bearing cyclosilicate in the ekanite-steacyite group was found in evolved peralkaline granites from the Morro Redondo Complex, south Brazil. It occurs with quartz, alkali feldspar and an unnamed Y-bearing silicate. Electron microprobe analysis indicates relatively homogeneous compositions with maximum ThO(2), Na(2)O and K(2)O contents of 22.4%, 2.93% and 3.15 wt.%, respectively, and significant REE(2)O(3) abundances (5.21 to 11.04 wt.%). The REE patterns show enrichment of LREE over HREE, a strong negative Eu anomaly and positive Ce anomaly, the latter in the most transformed crystals. Laser ablation inductively coupled plasma mass spectrometry trace element patterns display considerable depletions in Nb, Zr, Hf, Ti and Li relative to whole-rock sample compositions. Observed compositional variations suggest the influence of coupled substitution mechanisms involving steacyite, a Na-dominant analogue of turkestanite, iraqite, a REE-bearing end-member in the ekanite-steacyite group, ekanite and some theoretical end-members. Turkestanite crystals were interpreted as having precipitated during post-magmatic stages in the presence of residual HFSE-rich fluids carrying Ca, the circulation of which was enhanced by deformational events.
Resumo:
Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the threshold theta bootstrap percolation model on the homogeneous tree with degree b + 1, 2 <= theta <= b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p(f), such that a) for p > p(f), the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < p(f) , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p(c), such that 0 < p(c) < p(f), with the following properties: 1) if p <= p(c), then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p > p(c), then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p < p(c), the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p = p(c), the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p(f)] and analytic on (p(c), p(f) ), admitting an analytic continuation from the right at p (c) and, only in the case theta = b, also from the left at p(f).