869 resultados para Health planning
Resumo:
Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.
Resumo:
Many pregnancy and birth cohort studies investigate the health effects of early-life environmental contaminant exposure. An overview of existing studies and their data is needed to improve collaboration, harmonization, and future project planning.
Resumo:
Automatic scan planning for magnetic resonance imaging of the knee aims at defining an oriented bounding box around the knee joint from sparse scout images in order to choose the optimal field of view for the diagnostic images and limit acquisition time. We propose a fast and fully automatic method to perform this task based on the standard clinical scout imaging protocol. The method is based on sequential Chamfer matching of 2D scout feature images with a three-dimensional mean model of femur and tibia. Subsequently, the joint plane separating femur and tibia, which contains both menisci, can be automatically detected using an information-augmented active shape model on the diagnostic images. This can assist the clinicians in quickly defining slices with standardized and reproducible orientation, thus increasing diagnostic accuracy and also comparability of serial examinations. The method has been evaluated on 42 knee MR images. It has the potential to be incorporated into existing systems because it does not change the current acquisition protocol.
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
Organic dairy farms (OP; n=60) and conventional dairy farms (integrated production, IP; n=60), matched in size, location, and agricultural zone (altitude), were studied for possible differences in management, feeding, production, reproduction and udder health. OP and IP farms were similar in size (17.7 and 16.9 ha), milk quota (65900 and 70,000 kg/year), cow number (14 and 15), cow age (5.3 and 5.2 years), housing of cows of the Simmental x Red Holstein or Holstein breeds (87 and 75%; 45 and 60%), but differed significantly with respect to loose housing systems (18 and 7%), outside paddocks (98 and 75%), energy-corrected 305-d milk yield (5,695 and 6,059 kg), milk protein content (31.8 and 32.7 g/kg), use of bucket milking systems (73 and 33%), observance of regular (12-h) milking intervals (47 and 68%), routine application of the California-Mastitis-Test (10 and 28%), teat dipping after milking (25 and 43%) and blanket dry cow treatments (0 and 45%). Milk somatic cell counts on OP and IP farms (119 000 and 117,000/mL) and reproduction data were similar and there were no significant differences between OP and IP farms as concerns available feeds, planning and management of feeding. Alternative veterinary treatments were used more often on OP than IP farms (55 and 17%). Main causes for cow replacements on OP and IP farms were fertility disorders (both 45%), age (40 and 42%), sale (30 and 37%) and udder health (35 and 13%).Between OP and IP Swiss dairy farms thus relatively few larger differences were found.
Resumo:
BACKGROUND: Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. METHODS: Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. RESULTS: Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. CONCLUSION: Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.
Resumo:
This paper describes the Model for Outcome Classification in Health Promotion and Prevention adopted by Health Promotion Switzerland (SMOC, Swiss Model for Outcome Classification) and the process of its development. The context and method of model development, and the aim and objectives of the model are outlined. Preliminary experience with application of the model in evaluation planning and situation analysis is reported. On the basis of an extensive literature search, the model is situated within the wider international context of similar efforts to meet the challenge of developing tools to assess systematically the activities of health promotion and prevention.
Resumo:
OBJECTIVES: To analyze computer-assisted diagnostics and virtual implant planning and to evaluate the indication for template-guided flapless surgery and immediate loading in the rehabilitation of the edentulous maxilla. MATERIALS AND METHODS: Forty patients with an edentulous maxilla were selected for this study. The three-dimensional analysis and virtual implant planning was performed with the NobelGuide software program (Nobel Biocare, Göteborg, Sweden). Prior to the computer tomography aesthetics and functional aspects were checked clinically. Either a well-fitting denture or an optimized prosthetic setup was used and then converted to a radiographic template. This allowed for a computer-guided analysis of the jaw together with the prosthesis. Accordingly, the best implant position was determined in relation to the bone structure and prospective tooth position. For all jaws, the hypothetical indication for (1) four implants with a bar overdenture and (2) six implants with a simple fixed prosthesis were planned. The planning of the optimized implant position was then analyzed as follows: the number of implants was calculated that could be placed in sufficient quantity of bone. Additional surgical procedures (guided bone regeneration, sinus floor elevation) that would be necessary due the reduced bone quality and quantity were identified. The indication of template-guided, flapless surgery or an immediate loaded protocol was evaluated. RESULTS: Model (a) - bar overdentures: for 28 patients (70%), all four implants could be placed in sufficient bone (total 112 implants). Thus, a full, flapless procedure could be suggested. For six patients (15%), sufficient bone was not available for any of their planned implants. The remaining six patients had exhibited a combination of sufficient or insufficient bone. Model (b) - simple fixed prosthesis: for 12 patients (30%), all six implants could be placed in sufficient bone (total 72 implants). Thus, a full, flapless procedure could be suggested. For seven patients (17%), sufficient bone was not available for any of their planned implants. The remaining 21 patients had exhibited a combination of sufficient or insufficient bone. DISCUSSION: In the maxilla, advanced atrophy is often observed, and implant placement becomes difficult or impossible. Thus, flapless surgery or an immediate loading protocol can be performed just in a selected number of patients. Nevertheless, the use of a computer program for prosthetically driven implant planning is highly efficient and safe. The three-dimensional view of the maxilla allows the determination of the best implant position, the optimization of the implant axis, and the definition of the best surgical and prosthetic solution for the patient. Thus, a protocol that combines a computer-guided technique with conventional surgical procedures becomes a promising option, which needs to be further evaluated and improved.
Resumo:
Quantitative data obtained by means of design-based stereology can add valuable information to studies performed on a diversity of organs, in particular when correlated to functional/physiological and biochemical data. Design-based stereology is based on a sound statistical background and can be used to generate accurate data which are in line with principles of good laboratory practice. In addition, by adjusting the study design an appropriate precision can be achieved to find relevant differences between groups. For the success of the stereological assessment detailed planning is necessary. In this review we focus on common pitfalls encountered during stereological assessment. An exemplary workflow is included, and based on authentic examples, we illustrate a number of sampling principles which can be implemented to obtain properly sampled tissue blocks for various purposes.
Resumo:
OBJECTIVES To evaluate prosthetic parameters in the edentulous anterior maxilla for decision making between fixed and removable implant prosthesis using virtual planning software. MATERIAL AND METHODS CT- or DVT-scans of 43 patients (mean age 62 ± 8 years) with an edentulous maxilla were analyzed with the NobelGuide software. Implants (≥3.5 mm diameter, ≥10 mm length) were virtually placed in the optimal three-dimensional prosthetic position of all maxillary front teeth. Anatomical and prosthetic landmarks, including the cervical crown point (C-Point), the acrylic flange border (F-Point), and the implant-platform buccal-end (I-Point) were defined in each middle section to determine four measuring parameters: (1) acrylic flange height (FLHeight), (2) mucosal coverage (MucCov), (3) crown-Implant distance (CID) and (4) buccal prosthesis profile (ProsthProfile). Based on these parameters, all patients were assigned to one of three classes: (A) MucCov ≤ 0 mm and ProsthProfile≥45(0) allowing for fixed prosthesis, (B) MucCov = 0-5 mm and/or ProsthProfile = 30(0) -45(0) probably allowing for fixed prosthesis, and (C) MucCov ≥ 5 mm and/or ProsthProfile ≤ 30(0) where removable prosthesis is favorable. Statistical analyses included descriptive methods and non-parametric tests. RESULTS Mean values were for FLHeight 10.0 mm, MucCov 5.6 mm, CID 7.4 mm, and ProsthProfile 39.1(0) . Seventy percent of patients fulfilled class C criteria (removable), 21% class B (probably fixed), and 2% class A (fixed), while in 7% (three patients) bone volume was insufficient for implant planning. CONCLUSIONS The proposed classification and virtual planning procedure simplify the decision-making process regarding type of prosthesis and increase predictability of esthetic treatment outcomes. It was demonstrated that in the majority of cases, the space between the prosthetic crown and implant platform had to be filled with prosthetic materials.
Resumo:
In cranio-maxillofacial surgery, the determination of a proper surgical plan is an important step to attain a desired aesthetic facial profile and a complete denture closure. In the present paper, we propose an efficient modeling approach to predict the surgical planning on the basis of the desired facial appearance and optimal occlusion. To evaluate the proposed planning approach, the predicted osteotomy plan of six clinical cases that underwent CMF surgery were compared to the real clinical plan. Thereafter, simulated soft-tissue outcomes were compared using the predicted and real clinical plan. This preliminary retrospective comparison of both osteotomy planning and facial outlook shows a good agreement and thereby demonstrates the potential application of the proposed approach in cranio-maxillofacial surgical planning prediction.