943 resultados para HYDROGEN EVOLUTION REACTION
Resumo:
Although the potential to adapt to warmer climate is constrained by genetic trade-offs, our understanding of how selection and mutation shape genetic (co)variances in thermal reaction norms is poor. Using 71 isofemale lines of the fly Sepsis punctum, originating from northern, central, and southern European climates, we tested for divergence in juvenile development rate across latitude at five experimental temperatures. To investigate effects of evolutionary history in different climates on standing genetic variation in reaction norms, we further compared genetic (co)variances between regions. Flies were reared on either high or low food resources to explore the role of energy acquisition in determining genetic trade-offs between different temperatures. Although the latter had only weak effects on the strength and sign of genetic correlations, genetic architecture differed significantly between climatic regions, implying that evolution of reaction norms proceeds via different trajectories at high latitude versus low latitude in this system. Accordingly, regional genetic architecture was correlated to region-specific differentiation. Moreover, hot development temperatures were associated with low genetic variance and stronger genetic correlations compared to cooler temperatures. We discuss the evolutionary potential of thermal reaction norms in light of their underlying genetic architectures, evolutionary histories, and the materialization of trade-offs in natural environments.
Resumo:
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
Resumo:
Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite N-nitrosohydroxylamine-N-sulfonate (SULFI/NO), each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.
Resumo:
Adsorption of small molecules on the Ni{111} and NiO{111} surfaces is investigated under UHV and elevated pressures (~10-1 mbar) of hydrogen and water. The molecules considered are chosen for their relevance to understanding the mechanism of enantioselective hydrogenation on Raney Nickel modified by chiral molecules. Adsorption of water onto, and its subsequent reaction with, oxygen-covered Ni{111} is dependent on the initial atomic oxygen coverage. An OH species (O1s binding energy 531.5eV), oriented perpendicular to the surface, forms at atomic oxygen coverages <0.25ML. The reaction does not consume all the adsorbed oxygen for coverages ≥0.12ML. The p(2×2) atomic oxygen uperstructure is unreactive, while an OH species is formed on the p(√3×√3) superstructure at binding energy 530.9eV. L-alanine is adsorbed on Ni{111} as a model chiral modifier molecule. At low coverages, alanine forms a presumed tridentate alaninate species for coverages ≥0.11ML at 250K. A minority, bidentate zwitterionic species forms at coverages >0.11ML, but was not observed at 300K. Saturation occurs at 0.25ML. At high alanine coverages (≥0.19ML) and H2 pressure (≥1×10-2 mbar), the tridentate L-alaninate converts to bidentate zwitterionic L-alanine at 300K. Thermal evolution of L-alanine on Ni{111} under varying hydrogen pressures is examined. Adsorption of L-alanine onto hydroxylated NiO{111} at 300K in UHV, mimicking a catalyst surface under aqueous conditions, yields the tridentate alaninate which is immune to the effects of elevated hydrogen pressure. Exposing the L-alanine/Ni{111} adsorption system to water (≤10-1 mbar) oxidises the surface and recreates the L-alanine/hydroxylated NiO{111} system. Pyruvic acid on Ni{111} is examined as a model for hydrogenation substrate adsorption. Behaviour is coverage dependent and several conformations are possible at low coverages (≤0.1ML). Annealing at coverages <0.2ML causes a condensation reaction, releasing water onto the surface. High coverages do not condense and a saturation coverage of ~0.35ML is found.
Resumo:
Pure O-methyl N-methoxycarbonyl thiocarbamate CH(3)OC(S)N(H)C(O)OCH(3) (I) and O-ethyl N-methoxycarbonyl thiocarbamate, CH(3)CH(2)OC(S)N(H)C(O)OCH(3) (II), are quantitatively prepared by the addition reaction between the CH(3)OC(O)NCS and the corresponding alcohols. The compounds are characterized by multinuclear ((1)H and (13)C) and bi-dimensional ((13)C HSQC) NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach involving crystallographic data, vibration spectra and theoretical calculations. The low-temperature (150 K) crystal structure of II was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic space group P2(1)/n with a = 4.088(1)angstrom. b = 22.346(1)angstrom, c = 8.284(1)angstrom, beta = 100.687(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the thiocarbamate group -OC(S)N(H)- is syn (C=S double bond in synperiplanar orientation with respect to the N-H single bond), while the methoxycarbonyl C=O double bond is in antiperiplanar orientation with respect to the N-H bond. The non-H atoms in II are essentially coplanar and the molecules are arranged in the crystal lattice as centro-symmetric dimeric units held by N-H center dot center dot center dot S=C hydrogen bonds Id(N center dot center dot center dot S) = 3.387(1)angstrom, <(N-H center dot center dot center dot S) = 166.4(2)degrees]. Furthermore, the effect of the it electronic resonance in the structural and vibrational properties is also discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pure N,N`-di(methoxycarbonylsulfenyl)urea, [CH(3)OC(O)SNH](2)CO, is quantitatively prepared by the hydrolysis reaction of CH(3)OC(O)SNCO and characterized by (1)H NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach with data obtained from X-ray diffraction, vibrational spectra and theoretical calculation methods. The IR and Raman spectra for normal and deuterated species are reported. The crystal structure of [CH(3)OC(O)SNH](2)CO was determined by X-ray diffraction methods. The substance crystallizes in the orthorhombic P2(1)2(1)2 space group with a = 9.524(2), b = 12.003(1), c = 4.481 (1) angstrom, and Z = 2 moieties in the unit cell. The molecule is sited on a twofold crystallographic axis (C(2)) parallel to c and shows the anti-anti conformation (S-N single bonds antiperiplanar with respect to the opposite C-N single bonds in sulfenyl-urea-sic group). Neighboring molecules are arranged in a chain motif that extends along the C(2)-axis and is held by bifurcated NH center dot center dot center dot O center dot center dot center dot HN intermolecular bonds. A local planar symmetry is observed in the crystal for the central -SN(H)C(O)N(H)S- skeleton. Experimental and calculated data allow to trace this structural feature to the occurrence of N-H center dot center dot center dot O=C hydrogen bonding interactions. Calculated vibrational and structural properties are in good agreement with the experimentally determined features. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Trace element and isotopic data obtained for mantle spinel Iherzolites and diorite dykes from the Baldissero massif (Ivrea-Verbano Zone, Western Italy) provide new, valuable constraints on the petrologic and geodynamic evolution of the Southern Alps in Paleozoic to Mesozoic times. Whole rock and mineral chemistry indicates that Baldissero Iherzolites can be regarded as refractory mantle residues following limited melt extraction. In particular, the Light Rare Earth Elements (LREE)-depleted and fractionated compositions of whole rock and clinopyroxene closely match modelling results for refractory residues after low degrees (similar to 4-5%) of near-fractional melting of depleted mantle, possibly under garnet-facies conditions. Following this, the peridotite sequence experienced subsolidus re-equilibration at lithospheric spinel-facies conditions and intrusion of several generations of dykes. However, Iherzolites far from dykes show very modest metasomatic changes, as evidenced by the crystallisation of accessory titanian pargasite and the occurrence of very slight enrichments in highly incompatible trace elements (e.g. Nb). The Re-Os data for Iherzolites far from the dykes yield a 376 Ma (Upper Devonian) model age that is considered to record a partial melting event related to the Variscan orogenic cycle s.l. Dioritic dykes cutting the mantle sequence have whole rock, clinopyroxene and plagioclase characterised by high radiogenic Nd and low radiogenic Sr, which point to a depleted to slightly enriched mantle source. Whole rock and mafic phases of diorites have high Mg# values that positively correlate with the incompatible trace element concentrations. The peridotite at the dyke contact is enriched in orthopyroxene, iron and incompatible trace elements with respect to the Iherzolites far from dykes. Numerical simulations indicate that the geochemical characteristics of the diorites can be explained by flow of a hydrous, silica-saturated melt accompanied by reaction with the ambient peridotite and fractional crystallisation. The composition of the more primitive melts calculated in equilibrium with the diorite minerals show tholeiitic to transitional affinity. Internal Sm-Nd, three-point isochrons obtained for two dykes suggest an Upper Triassic-Lower Jurassic emplacement age (from 204 31 to 198 29 Ma). Mesozoic igneous events are unknown in the southern Ivrea-Verbano Zone (IVZ), but the intrusion of hydrous melts, mostly silica-saturated, have been well documented in the Finero region, i.e. the northernmost part of IVZ and Triassic magmatism with calc-alkaline to shoshonitic affinity is abundant throughout the Central-Eastern Alps. The geochemical and chronological features of the Baldissero diorites shed new light on the geodynamic evolution of the Southern Alps before the opening of the Jurassic Tethys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
Diacetyl, like other alpha-dicarbonyl compounds, is reportedly cytotoxic and genotoxic. A food and cigarette contaminant, it is related with alcohol hepatotoxicity and lung disease. Peroxynitrite is a potent oxidant formed in vivo by the diffusion-controlled reaction of the superoxide radical anion with nitric oxide, which is able to form adducts with carbon dioxide and carbonyl compounds. Here, we investigate the nucleophilic addition of peroxynitrite to diacetyl forming acetyl radicals, whose reaction with molecular oxygen leads to acetate. Peroxynitrite is shown to react with diacetyl in phosphate buffer (bell-shaped pH profile with maximum at 7.2) at a very high rate constant (k(2) = 1.0 X 10(4) M-1 s(-1)) when compared with monocarbonyl substrates (k(2) < 10(3) M-1 s(-1)). Phosphate ions (100-500 MM) do not affect the rate of spontaneous peroxynitrite decay, but the H2PO4- anion catalyzes the nucleophilic addition of the peroxynitrite anion to diacetyl. The intermediacy of acetyl radicals is suggested by a three-line spectrum (a(N) = a(H) = 0.83 mT) obtained by EPR spin trapping of the reaction mixture with 2-methyl-2-nitrosopropane. The peroxynitrite reaction is accompanied by concentration-dependent oxygen uptake. Stoichiometric amounts of acetate from millimolar amounts of peroxynitrite and diacetyl were obtained under nonlimiting conditions of dissolved oxygen. In the presence of either L-histidine or 2`-deoxyguanosine, the peroxynitrite/diacetyl system afforded the corresponding acetylated molecules identified by HPLC-MS"". These studies provide evidence that the peroxynitrite/diacetyl reaction yields acetyl radicals and raise the hypothesis that protein and DNA nonenzymatic acetylation may occur in cells and be implicated in aging and metabolic disorders in which oxygen and nitrogen reactive species are putatively involved.
Resumo:
The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ozonolysis of 2,4-xylidine (2,4-dimethyl-aniline) in acidic aqueous solution was investigated by determining the major reaction products and their evolution as a function of the reaction time and their dependence on the pH of the reaction system. 2,4-Dimethyl-nitrobenzene and 2,4-dimethyl-phenol were found to be primary reaction products; their formation might be explained by electron transfer and substitution reactions. 2,4-Dimethyl-phenol was further oxidized yielding 2,4-dimethyl- and/or 4,6-dimethyl-resorcinol by electrophilic addition of HO(center dot) radicals. The best fitting phenomenological kinetic model and the good convergence of calculated and experimentally determined rate constants imply two additional competitive pathways of substrate oxidation: (i) electrophilic addition of HO(center dot) radicals and fast subsequent substitution would also yield the resorcinol derivatives. (ii) Substrate and isolated products are thought to be oxidized by hydrogen abstraction at the benzylic sites, but the corresponding products (alcohols, aldehydes, and carboxylic acids) could not be identified. Fe(II) was added to probe for the presence of H(2)O(2), but had no or only a minor effect on the kinetics of the ozonolysis. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
CCSD(T)/cc-pVnZ (n = D, T, Q) calculations followed by extrapolations to the CBS limit are used to characterize stationary states of species participating in the N((4)S) + CH(3) (2A ``) reaction on the triplet PES. A mechanistic model is investigated and reaction rates are computed for every step and the overall reaction. Our best CBS estimate (1.93 x 10(10) cm(3) molecule(1) s(1)) for the overall rate constant leading to the formation of H(2)CN + H compares well with the experimental values (8.5 x 10 (11) and 1.3 x 10(10) cm(3) molecule(1) s(1)), thus reducing significantly the discrepancy of a previous theoretical result (9.1 x 10(12) cm(3) molecule(1) s(1)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The catalytic activity of Ni/CeO(2)-Al(2)O(3) catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO(2) dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 degrees C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H(2) yield with reasonably low amounts of CO. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The performance of La(2-x)Ce(x)Cu(1-y)Zn(y)O(4) perovskites as catalysts for the high temperature water-gas shift reaction (H T-W G S R) was investigated. The catalysts were characterized by EDS, XRD, BET surface area, TPR, and XANES. The results showed that all the perovskites exhibited the La(2)CuO(4) orthorhombic structure, so the Pechini method is suitable for the preparation of pure perovskite. However, the La(1.90)Ce(0.10)CuO(4) perovskite alone, when calcined at 350/700 degrees C, also showed a (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure, which produced a surface area higher than the other perovskites. The perovskites that exhibited the best catalytic performance were those calcined at 350/700 degrees C and, among these, La(1.90)Ce(0.10)CuO(4) was outstanding, probably because of the high surface area associated with the presence of the (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure and orthorhombic La(2)CuO(4) phase.
Resumo:
The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.