945 resultados para HUMAN BREAST TISSUES
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Dissertação (mestrado)–Universidade de Brasília, Universidade UnB de Planaltina, Programa de Pós-Graduação em Ciência de Materiais, 2015.
Resumo:
O cancro é a segunda causa de mortalidade a nível mundial. Um dos problemas nos tratamentos atuais de quimioterapia relaciona-se com os efeitos secundários causados pela falta de seletividade dos fármacos utilizados. Assim, um dos desafios atuais é o desenvolvimento de sistemas terapêuticos que permitam potenciar o efeito dos fármacos e diminuir os seus efeitos nocivos. Neste contexto, neste trabalho, foram sintetizados complexos de Fe, Co e Zn com fórmula geral [M(bipy-R)3]x+, a partir dos quais foi possível obter sistemas micelares formados in situ pela adição de um copolímero de PLA-b-PEG ou por introdução de macroligandos poliméricos anfifílicos. Os resultados mostram que as nanopartículas formadas apresentam tamanho e características adequadas para aplicações na terapia dirigida contra o cancro. Os resultados preliminares de citotoxicidade na linha tumoral humana da mama MDAMB231 indicam que todos os compostos estudados apresentam atividade citotóxica relevante, sendo os compostos micelares os mais promissores; Abstract: New micellar transition metals complexes for targeted therapy of cancer Cancer is the second leading cause of mortality worldwide. One problem in the current chemotherapy treatments is related to the severe side effects caused by the lack of selectivity of the drugs in clinical use. Thus, one of the current challenges is the development of new therapeutic systems that allow maximizing the effect of the drugs and reducing their harmful effects. In this context, several Fe, Co and Zn compounds of the general formula [M (bipy-R)3]x+ were synthesized in order to obtain micellar systems, either by in situ addition of a PLA-b-PEG copolymer or by introducing amphiphilic macroligands. The results show that the formed nanoparticles have size and characteristics suitable for applications in targeted therapy against cancer. Preliminary results of cytotoxicity in human breast cancer line MDAMB231 indicate that all the studied compounds show significant cytotoxic activity, being the micellar compounds the most promising agents.
Resumo:
Chemotherapy is a major cancer treatment option. The synthesis of new compounds with anti-proliferative properties and specificity is a current challenge in drug-discovery today. Our goal was to develop compounds, either hydroxyamides derived from D-glucuronic acid or triazole-cinchone hybrids, and to evaluate their anti-proliferative properties. Anti-proliferative activity of the newly synthesized compounds was examined against human breast adenocarcinoma (MCF-7) and human colon carcinoma (MDST8) cell-lines. Cell growth and viability was analysed by the Cell-Counting Kit-8 method. The 5-fluoroacil was used as a positive control. The compounds were studied between 10-9-10-5M. Fifteen compounds from the hydroxyamide family and two triazole compounds were investigated. Most of the compounds from the hydroxyamide family revealed mild (~20%) to moderate (50%) anti-proliferative effects in both cell-lines, with the exception of Hydroxyamide B1 which did not affect MDST8 proliferation, and hydroxyamide B3 where proliferation of MDST8 was inhibited by 90%. Triazoles (A and B) evoked a strong (~100%) anti-proliferative effect of MDST8 cell-lines. Proliferation of MCF-7 was selectively and effectively (~98%) inhibited by triazole B while triazole A had a mild effect. In conclusion, when compared to hydroxyamides, triazoles evoked a stronger anti-proliferative effect and might be promising anti-tumoral drugs.
Resumo:
Cancer remains an undetermined question for modern medicine. Every year millions of people ranging from children to adult die since the modern treatment is unable to meet the challenge. Research must continue in the area of new biomarkers for tumors. Molecular biology has evolved during last years; however, this knowledge has not been applied into the medicine. Biological findings should be used to improve diagnostics and treatment modalities. In this thesis, human formalin-fixed paraffin embedded colorectal and breast cancer samples were used to optimize the double immunofluorescence staining protocol. Also, immunohistochemistry was performed in order to visualize expression patterns of each biomarker. Concerning double immunofluorescence, feasibility of primary antibodies raised in different and same host species was also tested. Finally, established methods for simultaneous multicolor immunofluorescence imaging of formalin-fixed paraffin embedded specimens were applied for the detection of pairs of potential biomarkers of colorectal cancer (EGFR, pmTOR, pAKT, Vimentin, Cytokeratin Pan, Ezrin, E-cadherin) and breast cancer (Securin, PTTG1IP, Cleaved caspase 3, ki67).
Resumo:
FAPESP n. 03/04061-2
Resumo:
Monocarboxylate transporters (MCTs) are important cellular pH regulators in cancer cells; however, the value of MCT expression in cancer is still poorly understood. In the present study, we analysed MCT1, MCT2, and MCT4 protein expression in breast, colon, lung, and ovary neoplasms, as well as CD147 and CD44. MCT expression frequency was high and heterogeneous among the different tumours. Comparing with normal tissues, there was an increase in MCT1 and MCT4 expressions in breast carcinoma and a decrease in MCT4 plasma membrane expression in lung cancer. There were associations between CD147 and MCT1 expressions in ovarian cancer as well as between CD147 and MCT4 in both breast and lung cancers. CD44 was only associated with MCT1 plasma membrane expression in lung cancer. An important number of MCT1 positive cases are negative for both chaperones, suggesting that MCT plasma membrane expression in tumours may depend on a yet nonidentified regulatory protein.
Resumo:
Background: Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods: Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [ 100 mu g/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a. m. Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
To date, the laboratory has cloned seven unique human sulfotransferases; five aryl sulfotransferases (HAST1, HAST2, HAST3, HAST4 and HAST4v), an estrogen sulfotransferase and a dehydroepiandrosterone sulfotransferase. The cellular distribution of human aryl sulfotransferases in human hepatic and extrahepatic tissues has been determined using the techniques of hybridization histochemistry and immunohistochemistry. Human aryl sulfotransferase expression was detected in liver, epithelial cells of the gastrointestinal mucosal layer, epithelial cells lining bronchioles and in mammary duct epithelial cells. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We have generated transgenic mice that harbor a 140 kb genomic fragment of the human BRCA1 locus (TgN.BRCA1(GEN)). We find that the transgene directs appropriate expression of human BRCA1 transcripts in multiple mouse tissues, and that human BRCA1 protein is expressed and stabilized following exposure to DIVA damage, Such mice are completely normal, with no overt signs of BRCA1 toxicity commonly observed when BRCA1 is expressed from heterologous promoters. Most importantly, however, the transgene rescues the otherwise lethal phenotype associated with the targeted hypomorphic allele (Brca1(Delta exIISA)). Brca1(-/-); TgN.BRCA1(GEN) bigenic animals develop normally and can be maintained as a distinct line. These results show that a 140 kb fragment of chromosome 17 contains all elements necessary for the correct expression, localization, and function of the BRCA1 protein, Further, the model provides evidence that function and regulation of the human BRCA1 gene can be studied and manipulated in a genetically tractable mammalian system.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
Resumo:
c-Myb is a transcription factor employed in the haematopoietic system and gastrointestinal tract to regulate the exquisite balance between cell division, differentiation and survival. In its absence, these tissues either fail to form, or show aberrant biology. Mice lacking a functional c-myb gene die in utero by day 15 of development. When inappropriately expressed, as is common in leukaemia and epithelial cancers of the breast, colon and gastro-oesophagus, c-Myb appears to activate gene targets of key importance to cancer progression and metastasis. These genes include cyclooxygenase-2 (COX-2), Bcl-2, Bcl-X-L and c-Myc, which influence diverse processes such as angiogenesis, proliferation and apoptosis. The clinical potential for blocking c-Myb expression in malignancies is based upon strong preclinical data and some trial-based evidence. The modest clinical experience to date has been with haematopoietic malignancies, but other disease classes may be amenable to similar interventions. The frontline agents to achieve this are nuclease-resistant oligodeoxynucleotides (ODNs), which are proving to be acceptable therapeutic reagents in terms of tolerable toxicities and delivery. Nevertheless, further effort must be focused on improving their efficacy, eliminating non-specific toxicity and optimising delivery. Optimisation issues aside, it would appear that anti-c-Myb therapies will be used with most success when combined with other agents, some of which will be established cytotoxic and differentiation-inducing drugs. This review will explore the future strategic use of ODNs in vivo, focusing on a wide spectrum of diseases, including several beyond the haematopoietic malignancies, in which c-Myb appears to play a role.
Resumo:
Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
Resumo:
Breast cancer is the second most frequent type of cancer worldwide and is the most common malignant disease among women. Risk factors for breast cancer include early menarche, late menopause, hormonal therapies, exposure to environmental pollutants, smoking and alcohol use. However, increased or prolonged exposure to estrogen is the most important risk factor. It has been suggested that accumulation of DNA damage may contribute to breast carcinogenesis. Epidemiological studies suggest that cytogenetic biomarkers such as micronuclei in peripheral blood lymphocytes may predict cancer risk because they indicate genomic instability in target tissues. The objective of the present study was to evaluate the frequencies of micronuclei and the extent of DNA damage detected by comet assay in peripheral blood lymphocytes of untreated breast cancer patients and healthy women. The study was conducted using peripheral blood lymphocytes from 45 women diagnosed for Ductal ""in situ"" or invasive breast carcinoma and 85 healthy control women. Micronuclei and comet assays were performed to detect spontaneous DNA damage. The results showed that micronuclei frequencies and tail intensity, detected by comet assay, were significantly higher in the breast cancer group than in controls. The levels of DNA damage were similar in smokers and non-smokers, and aging did not influence the frequencies of micronuclei or tail intensity values observed in either group. In conclusion, the present work demonstrates higher levels of DNA damage in untreated breast cancer patients than in healthy women.
Resumo:
An immunoperoxidase technique was used to examine IP-10 (interferon-gamma inducible protein 10), RANTES (regulated on activation normal T cell expressed and secreted), MCP-1 (monocyte chemoattractant protein-1), and MIP-1alpha (macrophage inflammatory protein-1alpha) in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups according to the size of infiltrate. MIP-1alpha+ cells were more abundant than the other chemokines with few MCP-1+ cells. The mean percent MIP-1alpha+ cells was higher than the percent MCP-1+ cells (P = 0.02) in group 2 (intermediate size infiltrates) lesions from periodontitis subjects, other differences not being significant due to the large variations between tissue samples. Analysis of positive cells in relation to CD4/CD8 ratios showed that with an increased proportion of CD8+ cells, the mean percent MIP-1alpha+ cells was significantly higher in comparison with the mean percent RANTES+ and MCP-1+ cells (P < 0.015). Endothelial cells were MCP-1+ although positive capillaries were found on the periphery of infiltrates only. Keratinocyte expression of chemokines was weak and while the numbers of healthy/gingivitis and periodontitis tissue sections positive for IP-10, RANTES and MCP-1 reduced with increasing inflammation, those positive for MIP-1alpha remained constant for all groups. In conclusion, fewer leucocytes expressed MCP-1 in gingival tissue sections, however, the percent MIP-1alpha+ cells was increased particularly in tissues with increased proportions of CD8 cells and B cells with increasing inflammation and also in tissues with higher numbers of macrophages with little inflammation. Further studies are required to determine the significance of MIP-1alpha in periodontal disease.