967 resultados para HOMOGENEOUS POLYNOMIALS
Resumo:
The concept of homogenous response units (HRU) was designed as a general concept for the delineation of basic spatial units. Only those characteristics of landscape, which are relatively stable over time (even under climate change) and largely unsusceptible to anthropogenic influence, were selected. The HRU can be seen as a basic spatial framework for the implementation of climate change and land management alternative scenarios into global modeling and therefore is a basic input for delineation of landscape units. HRUs are defined based on classifications of altitude (five classes: 1 (0 - 300m), 2 (300 - 600m), 3 (600 - 1100m), 4 (1100 - 2500m), 5 (> 2500m)), slope (seven classes(degrees): 1 (0 - 3), 2 (3 - 6), 3 (6 - 10), 4 (10 - 15), 5 (15 - 30), 6 (30 - 50), 7 (> 50)) and soil composition (five classes: 1 (sandy), 2 (loamy), 3 (clay), 4 (stony), 5 (peat)). e.g. HRU111 refers to Altitude class 1: 0-300m; Slope class 1: 0-3 degrees; and Soil class 1: sandy. Areas of non-soil are assigned 88. HRUs have a spatial resolution of approximately 10 km**2.
Resumo:
We evaluated acidification effects on two crustose coralline algal species common to Pacific coral reefs, Lithophyllum kotschyanum and Hydrolithon samoense. We used genetically homogeneous samples of both species to eliminate misidentification of species. The growth rates and percent calcification of the walls of the epithallial cells (thallus surface cells) of both species decreased with increasing pCO2. However, elevated pCO2 more strongly inhibited the growth of L. kotschyanum versus H. samoense. The trend of decreasing percent calcification of the cell wall did not differ between these species, although intercellular calcification of the epithallial cells in L. kotschyanum was apparently reduced at elevated pCO2, a result that might indicate that there are differences in the solubility or density of the calcite skeletons of these two species. These results can provide knowledge fundamental to future studies of the physiological and genetic mechanisms that underlie the response of crustose coralline algae to environmental stresses.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
Arsenic alloying is observed for epitaxial layers nominally intended to be In0.75Ga0.25N. Voids form beneath their interfaces with GaAs substrates, acting as sources of Ga + As out-diffusion into the growing epilayers. As a result, heteroepitaxial single-phase quaternary InxGa1-xAsyN1-y, films are formed with x similar to 0.55 and 0.05 menor que y menor que 0,10. While an undoped epilayer retains the wurtzite structure, a Mn-doped sample showed randomly spaced dopant segregations, which, together with a slightly higher As concentration, led to a transformation from the hexagonal to the twinned cubic phase.
Resumo:
Ponencia
Resumo:
Homogeneous links were introduced by Peter Cromwell, who pr oved that the projection surface of these links, that given by the Seifert al- gorithm, has minimal genus. Here we provide a different proof , with a geometric rather than combinatorial flavor. To do this, we fir st show a direct relation between the Seifert matrix and the decompo sition into blocks of the Seifert graph. Precisely, we prove that the Sei fert matrix can be arranged in a block triangular form, with small boxes in th e diagonal corresponding to the blocks of the Seifert graph. Then we pro ve that the boxes in the diagonal has non-zero determinant, by looking a t an explicit matrix of degrees given by the planar structure of the Seifer t graph. The paper contains also a complete classification of the homogen eous knots of genus one.
Resumo:
The sparse differential resultant dres(P) of an overdetermined system P of generic nonhomogeneous ordinary differential polynomials, was formally defined recently by Li, Gao and Yuan (2011). In this note, a differential resultant formula dfres(P) is defined and proved to be nonzero for linear "super essential" systems. In the linear case, dres(P) is proved to be equal, up to a nonzero constant, to dfres(P*) for the supper essential subsystem P* of P.
Resumo:
Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.
Resumo:
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.
Resumo:
It is known that some orthogonal systems are mapped onto other orthogonal systems by the Fourier transform. In this article we introduce a finite class of orthogonal functions, which is the Fourier transform of Routh-Romanovski orthogonal polynomials, and obtain its orthogonality relation using Parseval identity.
Resumo:
La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.
Resumo:
In this paper we present a recurrent procedure to solve an inversion problem for monic bivariate Krawtchouk polynomials written in vector column form, giving its solution explicitly. As a by-product, a general connection problem between two vector column of monic bivariate Krawtchouk families is also explicitly solved. Moreover, in the non monic case and also for Krawtchouk families, several expansion formulas are given, but for polynomials written in scalar form.
Resumo:
The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent “accurately” harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in “accurate” reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Padé approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.
Resumo:
A homogeneous DNA diagnostic assay based on template-directed primer extension detected by fluorescence resonance energy transfer, named template-directed dye-terminator incorporation (TDI) assay, has been developed for mutation detection and high throughput genome analysis. Here, we report the successful application of the TDI assay to detect mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the human leukocyte antigen H (HLA-H) gene, and the receptor tyrosin kinase (RET) protooncogene that are associated with cystic fibrosis, hemochromatosis, and multiple endocrine neoplasia, type 2, respectively. Starting with total human DNA, the samples are amplified by the PCR followed by enzymatic degradation of excess primers and deoxyribonucleoside triphosphates before the primer extension reaction is performed. All these standardized steps are performed in the same tube, and the fluorescence changes are monitored in real time, making it a useful clinical DNA diagnostic method.
Resumo:
The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 103 boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here.