439 resultados para HIRFL-CSRe
Resumo:
HIRFL是一个组合式回旋加速器系统。束流经SFC预加速后注入SSC进行第二次加速,SFC和SSC必须满足严格的匹配关系。多年的运行表明,束流从SSC注入系统到进入正常加速轨道这一段,影响的因素比较多,束流损失很大。为了提高SSC注入效率,以满足放射性次级束流线(RIBLL)及兰州重离子加速器冷却储存环(HIRFL-CSR)对束流的更高要求,论文对影响SSC注入系统的部分相关因素进行了研究,以便提供对HIRFL的运行调束和升级改造有参考价值的结果。主要工作可分为三部分;(1)理论等时场下SSC注入量的接收范围。通过数值模拟计算了三种典型离子的注入轨道,考虑了高频电压幅度的影响,得到了SSC在理论等时场下的能量可接收范围,并给出了注入系统的参数。(2)剩余拢动场对SSC注入系统的影响。计算了存在剩余拢动场时SSC注入轨道的变化,找出了目前高频电压加速较轻的重离子时束流损失较大的原因,给出了相关参数。(3)注入条件的变化对束流轨道的影响。注入条件的变化会引起束流轨道的进动,论文对存在剩余拢动场时利用不流轨道进动提高注入和引出效率进行了初步研究。
Resumo:
遗传转化是基因工程的一个重要研究方向,而利用重离子束介导转基因技术是近年来新兴的一门技术,这种技术的原理是利用离子束对植物细胞的蚀刻作用,造成受体细胞表面的损伤和穿孔,从而引起细胞膜透性和跨膜电场的改变,将外源基因引入植物细胞。特别是近年来植物总D NA转化技术得到了发展,借助离子束介导转移活性裸露D NA大分子已成为当前引人注目的一个研究方向。本论文将利用这一基因转导的新技术,探索基因高转化效率和稳定表达的转基因方法。而且,本论文还结合辐射育种研究了植物种子受辐照后的相关生物学效应。材料与方法: 本论文采用兰州重离子研究装置(HIRFL)加速的碳离子辐照植物种子,种子经辐照后,以常规手段进行基因转导。另一部分被照种子则萌发后,统计其发芽率,发芽势,微核,并进一步测定其多项酶学指标,分析它们与剂量之间的关系。结果:·低剂量辐照不能抑制种子的发芽率,反而有促进种子萌发的作用·低剂量辐照也能激活细胞的防御系统,部分抗氧化酶活性与LET有相关性。·作为主要抗氧化物质的SOD(超氧化物歧化酶)、CAT(过氧化氢酶)对剂量的反应不灵 敏,低剂量作用时不能发挥作用。这种情况卞可能主要由GsH佩Px(谷肤甘肤过氧化物酶)和NOS(一氧化氮合酶)发挥清除自由基的作用一·低剂量辐照可以促进种子萌发,高剂量则抑制种子的发芽。碳离子和电子辐照都能激活细胞的防系统。在幼苗期,抗氧化酶的分布不尽相同:SOD9超氧化物歧化酶(和GSH-PX(谷胱甘肽过氧化物酶)的活性是根茎部高于叶片部,而CAT(过氧化氢酶)的活性是叶片部更高。
Resumo:
兰州重离子加速器冷却储存环(HIRFL-CSR),作为一个新型加速器,对监控它运行的探测器性能提出了新的要求,研制新型、高精度、高性能的探测器是CSR建立的必然要求。我们为它设计了两种基于二次电子的飞行时间探测器。该探测器具有极好的时间分辨、非常少的能损和多重散射。特别在超重粒子的合成试验中,探测超重粒子非常合适。本论文包括四个章节。第一章综述了飞行时间探测器技术,简单介绍了RIBLL的飞行时间系统和CSR的飞行时间系统以及测量飞行时间的基本原理;并简单介绍了CSR束流诊断系统束流诊断元件的分布、种类及参数和本论文的研究工作及意义。第二章是和本论文飞行时间探测器有关的一些知识。简要阐述了二次电子发射原理;并对探测器用到的主要放大元件微通道板作了详细介绍。第三章和第四章详细论述了研制的两种基于二次电子的飞行时间探测器。它们分别采用电场和磁场将二次电子偏转到微通道板上放大来得到时间信号。详细介绍了探测器的结构、参数;并测量了它们的时间分辨。此外,还研制了一种非拦截式的束流诊断元件一一容性相位探针,包括探针的结构及测试结果。
Resumo:
重元素的高电离态、少电子原子光谱研究是物理学当今国际上前沿领域研究的热点课题之一。利用兰州重离子加速器HIRFL产生的不同能量离子,选择性的对有关重元素高电离态、少电子(剥掉多电子)原子光谱进行研究,这对于研究重元素高电离态原子结构和受控聚变研究具有特殊的意义。本文基于束箔光谱学测量原理,成功开发了高电离态原子光谱与能级寿命自动测量控制系统。该系统用于在HIRFL上进行的高电离态原子光谱与能级寿命测量实验。本文首先介绍了重元素的高电离态、少电子原子光谱研究,随后介绍了光谱与能级寿命自动测量控制系统的框架、解决方案和软件开发,软件开发部分是本文阐述的重点,包括软现代软件技术发展、软件工程开发和整个测量控制系统软件设计,本文都作了详尽的叙述。在实际程序代码中,有很多模块和类,本文就几个典型类的设计进行了剖析。最后给出实验结果和面向未来的系统优化方案。基于Windows 98,作者用Visual C++ 6.0成功的完成了光谱与能级寿命自动测量控制系统软件设计。该软件在HIRFL上己经完成了多次实验,系统可靠性和数据获取实时性都很高,实验中获取了非常精确的光谱曲线。该软件实现了实验过程的程序化运行,并在实验中获得了准确数据,它的完成对于重元素的高电离态、少电子原子光谱的研究具有良好的实用价值。
Resumo:
国家“九五”重大科学工程项目一兰州重离子加速器冷却储存环工程 CIRFL-CSR),其准直安装由于所涉及的范围大,对元件的定位精度要求极高,所以难度很大.针对工程的特殊要求和具体情况,我们在HIRFL-CSR的准直安装中采取了一系列新的方法和仪器.其中包括建立测量控制网,使用激光跟踪仪进行测量和安装定位.本论文主要介绍了HIRFL-CSR的准直安装的总体方案佩介绍了SMX4500型激光跟踪仪的特点和主要功能佩结合激光跟踪仪的特点,建立了CSR准直安装数据库系统;测量控制网的设计.结合工程的具体特点和仪器的功能,我们拟定了“分层建网,逐段控制”的建网方案.分别设计了CSRm, CSRer前注入线,RIB II各个部分的控制网,以及全局控制网.控制网图用AUTOCAD2000直接在相应的工程图上绘出,再将控制网参数输入到NASEW95中进行平差计算.并且编写了从AUTOCAD2000到NASEW95的数据交换程序,实现了数据交换的自动化.在控制网设计的过程中,采用了方便高效的“自由设站”的方法,和传统的方法相比,用较小的工作量,获得了更多的参加平差的网点.另外,采用了一种特殊形式的闭合延伸导线延伸网,使环上的控制网点的数量减少一半以上,而精度却有所增加。根据激光跟踪仪的特点,建立了一个关系数据库系统,并编写了其前端应用程序,实现了HIRFL-CSR准直安装过程中的数据存储,坐标转换,以及必要的文件格式转换等功能.对于安装定位,采取以下措施:分别建立元件坐标系,局部坐标系和全局坐标系,然后用坐标转换的方法,将不可见的元件磁中心的局部坐标值,转化为安装定位时可用的靶标座的局部坐标值,最后用激光跟踪仪进行安装定位.在安装定位过程中,由于激光跟踪仪可同时监测靶标点的X,Y,Z坐标,所以元件的平面坐标值(X, Y)和竖直方向的坐标值(Z)可同时考虑,一次调整完.改变了传统的准直过程中的元件的水平和平面位置分两次调整的方法.
Resumo:
本文简要介绍了快重离子在固体材料,特别是在高分子材料和团簇材料中引起强电子激发效应研究的发展历史、研究现状和基本理论。重点描述了在兰州重离子加速器(HIRFL)上完成的2.1 GeV Kr离子辐照聚碳酸酷CPC)膜的实验和辐照样品的傅立叶变换红外光谱(FTIR )和紫外/可见光谱(UVIVIS )分析。FTIR分析结果表明,高能Kr离子在PC膜中引起的辐照效应主要是键的断裂和材料的降解。随着电子能损和辐照剂量的增大,材料逐渐碳化,同时有炔基生成。在UVNIS中,380, 450, 500nm波长处的吸光度之差(A-A_0)与剂量近似成线性关系,与电子能损呈确定的指数关系(指数分别为1.69,1.86和2.02);与电子能量沉积密度也近似成指数关系。描述了在HIRFL上完成的2.0GeV Xe离子辐照C_(60)薄膜的实验和辐照样品的FTIR谱、拉曼谱(Raman)和X射线衍射谱(XRD)分析。分析结果表明:2.0 GeV Xe离子辐照C60薄膜引起的损伤过程主要取决于强电子激发,在特定电子能损处,损伤的部分恢复是由于强电子激发的退火效应引起的。快重离子辐照产生的物理化学改性不仅与离子的电子能损有关,还与离子的速度有关。在同样的电子能损下,速度越小,产生的效应就越明显。
Resumo:
目的:探讨低剂量碳离子辐照细胞引起的适应性反应,将低剂量效应的研究范围拓宽至高LET电离辐射领域;研究单一时相细胞经低能碳离子辐照后,存活曲线、失活截面和相对生物学效应与细胞周期各时期的关系.材料与方法:采有中国仓鼠肺V79细胞和小鼠黑色素瘤B16细胞,利用兰州近代物理研究所重离子研究装置(HIRFL)产生的碳离子,主要以细胞存活分数和细胞微核率为生物终点,探讨高LET的碳离子对V79细胞和B16细胞的低剂量效应.采用中国仓鼠卵巢细胞CHO-K和细胞同步化方法,利用德国GSI的直线加速器(Unilac)终端产生的低能碳离子,以细胞存活分数为生物终点,研究单一时相细胞经低能碳离子辐照后,存活曲线、失活截面与细胞周期各时期的关系,并与X射线的结果作了比较,得出了各时期细胞的相对生物学效应.结果:低剂量碳离子辐照细胞引起的生物学效应:1.和γ射线一样,低剂量重离子,如0.02Gy的碳离子辐照也能提高细胞的克隆形成率.这种集落形成能力的提高可能与低剂量辐照使细胞对受损DNA的修复能力增强有关.2.从细胞存活分类来看,0.02Gy预处理能使V79和B16两种细胞产生较明显的适应性反应;0.05Gy预处理引起V79细胞的适应性反应不明显,未能引起B16细胞的适应性反应.3.从细胞微核率来看,0.02Gy预处理能引起两种细胞的适应性反应;0.05Gy预处理未能引起两种细胞的适应性反应,并且已表现出协同损伤的趋势.4.高LET的碳离子和低LET射线一样,可以诱导细胞的兴奋效应或适应性反应.但诱导剂量D1不宜过高.
Resumo:
兰州重离子加速系统(HIRFL)是由注入器SFC(螺旋型扇聚焦加速器)和主加速器SSC(分离扇聚焦加速器)组成注入器SFC使用外离子源轴向注入方法,注入从ECR离子源引出的低能高电荷态重离子束流.由于空间电荷效应和SFC杂散磁场的影响,造成SFC的注入效率不高,使得SFC的引出束流强度较低,从而也制约了SSC的束流强度,远远不能满足正在建造的兰州重离子加速器冷却储存环(HIRFL-CSR)和放射性束流物理实验对束流强度的要求.为了满足CSR和物理实验对束流强度的要求,该文通过对具有高压平台的SFC轴向注入系统的较为详细的设计研究,探讨在SFC上实现提高注入效率的可行性和有效性.
Resumo:
切割磁铁主要用于加速器束流的注入和引出系统中。从结构和用途上来看,切割磁铁是一种特殊的二极偏转磁铁;与常规的二极磁铁相比,它有结构复杂、好场区位置特殊、杂散磁场低、运行条件苛刻等特点。特别是切割磁铁的切割边,设计和制造相当复杂,它是屏蔽杂散磁场、得到理想磁场分布的决定因素;另外,为了便于真空管道的烘烤,防止烘烤真空管道时烧坏磁铁线圈,切割磁铁还必须有一套调节灵活、复位方便的传动机构。HIRFL-CSR工程共有四台切割磁铁用于加速器束流的注入和引出系统中。论文介绍了切割磁铁的选型、切割磁铁样机的电磁设计、二维磁场计算、结构设计以及工艺设计等磁铁设计的全部过程;另外,对切割磁铁样机总体的以及主要部件的技术要求、加工以及测试结果也作了比较全面的介绍。论文详细介绍了切割磁铁样机的二维磁场的计算;因为就目前的技术水平来说,二维磁场的计算是磁铁设计的主要环节,是磁场优化的主要手段;特别是二维磁场的计算结果,是磁铁设计的主要技术依据,是一种经济实用的模拟过程。一些比较成熟的场计算软件,如TOSCA、ANSYS|、MAFIA等更是具有人机界面简单、建模方便、计算结果直观可靠等优点。切割磁铁的磁场计算所用的程序是TOSCA;从文中提供的测试结果看,计算结果与实测值的误差只有1%,可见其结果是极其可信的。样机的成功研制为切割磁铁的设计和加工积累了经验。
Resumo:
气体探测器是历史最悠久的核探测器之一气体探测器具有成本低廉、制备简单、性能可靠和使用方便等特点。而且气体探测器的形状和尺寸可任意设计,厚度可随气体气压的变化而改变,适合做大面积位置灵敏、大立本角探测和有较宽的动态测量范围。所以气体探测器在各自的应用范围内发挥着巨大的作用。在兰州放射性束流线(RIBLL)上开展次级束实验的过程中,束流的定位和发散度测定都是非常重要的。我们研制了两种高性能的双维位置灵勘平行板雪崩计数器(PPAC),一种为传统的三个极板结构,另外一种为五个极板的多极结构,分别适用于较重粒子和轻粒子的位置测量。对于五个极板的多极结构的探测器,灵敏面积为100mm×100mm,采用电荷分除法读出位置,我们用3组分α源测试,工作气体选用异丁烷。测试在6.5mb气压下,位置分辨为0.55mm(FWHM),探测效率大于99.2%,位置离散小于士0.2mm。一系列的性能指标都达到了同类探测器的最好水平。该探测器和以前研制的三极板PPAC的性能均已满足RIBLL的要求,将会用作RIBLL重要的束诊元件和位置探测器。同时改进后还能在即将建成的兰州重离子加速器冷却存储环(HIRFL-CSR)上的束流诊断过程中发挥重要的作用。同时,为在RIBLL上开展超重元素和超重核素的合成实验研制了一种多阳极横向场气体电离室(MAIC)。在100mbP10气体下,对应第四块大灵敏区域,5.806MeV~(244)Cm的α粒子的能量损失为1.30MeV,得出该探测器的能量分辨为41.1keV(FwHM),相对分辨为3.16%。该探测器适合于较重粒子的鉴别,性能指标已经满足RIBLL鉴glI灼子的要求。
Resumo:
加速器控制系统的前端控制服务器系统的实现方案已经有很多,但随着电子技术的发展,特别是嵌入式技术的发展,又有很多新的性能更高,成本更低,实现更简单的力一案产生。值CSR控制系统的新建和HIRFL控制系统的改造之机,本文在总结前人技术的基础上,提出了一科,采用嵌入式技术实现前端控制服务器系统的新型方案。本文首先简要地介绍了CSR控制系统的基本思想和前端控制服务器系统,引出前端控制服务器系统的嵌入式技术实现方案。然后对CSR控制系统的被控对象,目前现场总线的发展和嵌入式技术的最新进展进行了一些分析,找到CSR控制系统中前端控制服务器系统的嵌入式技术方案的最佳实现方法,即采用嵌入式网关将RS-485总线接入以太网的方案。接下来就着重论述了基于RS-485总线的一些关键的嵌入式模块的研制,比如数字1/0模块,ADC模块,高精度ADC模块,嵌入式网关模块等等。通过这些模块的研制和测试成功,我们可以根据需要,选择适当的模块,搭建各个前端控制服务器系统的子系统。实践证明,这种采用嵌入式网关将RS-485总线接入以太网的技术去构建前端控制服务器系统的实现方法是可行的,该方案在性能、降低成本、集成度、稳定性、网络化等方面都有显著的提高。可以预见,随着嵌入式技术的发展,我们的控制方案会越来越完善。
Resumo:
本文研究了用于九五国家大科学工程“兰州重离子加速器冷却储存环HIRFL-CSR”上的Schottky探针及利用schottky质谱仪进行核质量测量,研究了当前国际上核质量测量研究方法并结合当前的核质量测量研究现状,根据CSR能提供的实验条件,研究认为在HIRFL-CSR上利用Schttkv质谱仪方法进行核质量测量有很广阔的前景。根据HIRFL-CSR束流参数和束诊要求,设计了schottky探针电极及超高真空Schottky探针安装靶室。利用三维电磁场模拟计算程序MAFIA优化了Schottky探针的结构和形状。通过改变电极板的边缘场矫正板的长度和角度,在极板间获得了最佳的场分布。模拟结果表明对水平和垂直方向的探针矫正板长度分别为4cm、3cm并且夹角分别为30、20度时在探针极板间可得到很好的横向匀场。对Schottky样机的信号响应进行的仔细的测试,获得了较满意的结果。本文还研究了利用Schottky质谱仪进行核质量测量的Schottky信号处理方法与质量测量原理,对当前远离β稳定线的核质量测量前景做了仔细分析。对Schottky探针用于CSR的束流参数测量和核质量测量方法进行了较深入的探讨。
Resumo:
HIRFL-CSR(童话垂离子冷却储存环)是国家重点实验室之一。CSR控制系统是保证CSR正常运行的重要环节。作为这样一个大型的控制系统,是由多个子系统分别组成的。在CSR新的控制方案中,我们允许用户通过访问网页来控制设备和获知设备的当前运行情况。本文主要描述了三个子系统中设备控制的实现和设备监控程序的实现,分别采用了COM组件技术和Win32应用程序。本文首先介绍了Windows编程,win32应用程序,开发COM组件工具ATL,和COM组件的基本概念。随后详细介绍了在实现设备控制和设备监控程序中所应用的各种技术,包括:多线程的实现、川州访问远立湍数据库、串日通信的实现,对硬件板卡的访问。其次,还介绍了各个子系统控制软件的结构和总体设计,包括了被控设务的COM组件的设计,监控程序的设计和功能实现方案。主要以电子冷却控制系统为例,详细介绍了分别用于控制常压端和高压端设备的COM组件功能实现和常压端监控程序、高压端监控程序功能的实现。整个论文的工作完成了CSR控制系统中子系统的CPM组件和设备监控程序的软件编制,调试。为以后开发和实现控制系统的COM组件和设备监控程序提供了一个原型。
Resumo:
目的:木论文重点研究重离子不同剂量离子辐照后DNA损伤程度的变化,以及进而引起的细胞周期改变等现象。为重离子治癌的临床应用积累必要的基础数据。材料与方法:采用兰州重离子研究装置(HIRFL)加速的碳、氖等重离子辐照体外培养的贴璧肿瘤细胞,以单细胞电泳法(SCGE)检测DNA的损伤程度;以流式细胞技术(FCM)检测细胞的周期改变现象。结果:1.SMMC-7721月干癌细胞经重离子(氖、碳)辐照后,DNA损伤现象明显,表现为单细胞电泳中出现的普遍的拖尾现象(t-test,P<0.001,compared with control。2.80MeV/u 2ONe10+辐照后立即检测发现:2Gy造成100%的细胞损伤:8Gy照射造成80%的细胞严重损伤:且彗尾拖尾长度随剂量增加早.指数关系增长,仔值为0.99058。3.辐照后12小时,若干不同剂量辐照的样品其彗尾长度趋于相同:如05协、Ic)和ZGy辐照样品的彗尾长度分别为132.3±12.8、132.9±9.5和133.1±11.7μm,24h,时为35.0±3.9、35.5±4.1和48.2±6.Oμm,这说明在一定剂量范围内(0.5-2Gy)的辐照下,随着修复时间的延长,细胞DNA的损伤程度将趋于相同。同时,细胞继续孵育12小时,对于0.55-2Gy辐照组来说DNA的损伤情况是24小时内操作最严重的。4.辐照后24小时,0.5-2Gy辐照组埙份明显修复,略高于对照,但是对于4Gy和SGy辐照组仍带有明显的损伤现魏。簇说眼熏离子辐照(>4Gy)所致DNA报伤的不足修复性。5,DNA的损伤将导致细胞通过一系列调节机制抑制细胞周期的进行,为DNA修复系统提供充足的时间进行DNA修复,从而造成明显的细胞周期阳.滞现琢,这在重离子辐照实验中同样得到证实,尤其是S期、G2/M期阻净带现象非常明显。
Resumo:
CSR磁场测量系统是国家大科学工程兰州重离子加速器冷却储存环(HIRFL-CSR)的一个重要组成部分,它的建立对工程建设有着重要的现实意义。磁场测量数据是加速器束流动力学模拟、磁铁准直安装以及调束参数预置的根本依据,准确可靠的磁场参数测量更是加速器运行的一个重要保证。本论文从磁场测量的基本理论出发介绍了用于加速器磁铁各个方面参数测量的基本方法,并根据CSR对于磁铁参数的具体要求,结合国内外许多同类实验室的经验,制定了CSR磁铁测量方案;组建了三套用于不同目的的测量系统:Hall点测系统、积分测量系统和谐波测量系统。文中介绍了各测量系统的具体构成和运行模式,并对系统中主要元件的结构和参数设计以及实际加工工艺和质量检测的情况作了详细论述。通过理论分析和实际测量,讨论了CSR测磁系统中各种测量探头系统误差产生的原因和大小,以及测量中使用到的电子设备的误差和稳定性。在系统建成后,通过对不同环境下同一数据的长期重复性测量,认为各个测量系统是具有长期稳定性和重复性的。论文最后介绍了新组建的测磁系统在CSRJn注入线二极磁铁和四极磁铁的测量方面的实际应用,在对测磁数据结果分析的基础上讨论了CSR原型磁铁的设计和加工过程中存在的问题,以及CSRIn磁铁加工中应做出的改进和注意事项。