921 resultados para HIGH-PRESSURE TREATMENT


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is an increasing demand for DNA analysis because of the sensitivity of the method and the ability to uniquely identify and distinguish individuals with a high degree of certainty. But this demand has led to huge backlogs in evidence lockers since the current DNA extraction protocols require long processing time. The DNA analysis procedure becomes more complicated when analyzing sexual assault casework samples where the evidence contains more than one contributor. Additional processing to separate different cell types in order to simplify the final data interpretation further contributes to the existing cumbersome protocols. The goal of the present project is to develop a rapid and efficient extraction method that permits selective digestion of mixtures. Selective recovery of male DNA was achieved with as little as 15 minutes lysis time upon exposure to high pressure under alkaline conditions. Pressure cycling technology (PCT) is carried out in a barocycler that has a small footprint and is semi-automated. Typically less than 10% male DNA is recovered using the standard extraction protocol for rape kits, almost seven times more male DNA was recovered from swabs using this novel method. Various parameters including instrument setting and buffer composition were optimized to achieve selective recovery of sperm DNA. Some developmental validation studies were also done to determine the efficiency of this method in processing samples exposed to various conditions that can affect the quality of the extraction and the final DNA profile. Easy to use interface, minimal manual interference and the ability to achieve high yields with simple reagents in a relatively short time make this an ideal method for potential application in analyzing sexual assault samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some planktonic groups suffer negative effects from ocean acidification (OA), although copepods might be less sensitive. We investigated the effect of predicted CO2 levels (range 480-750 ppm), on egg production and hatching success of two copepod species, Centropages typicus and Temora longicornis. In these short-term incubations there was no significant effect of high CO2 on these parameters. Additionally a very high CO2 treatment, (CO2 = 9830 ppm), representative of carbon capture and storage scenarios, resulted in a reduction of egg production rate and hatching success of C. typicus, but not T. longicornis. In conclusion, reproduction of C. typicus was more sensitive to acute elevated seawater CO2 than that of T. longicornis, but neither species was affected by exposure to CO2 levels predicted for the year 2100. The duration and seasonal timing of exposures to high pCO2, however, might have a significant effect on the reproduction success of calanoid copepods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in olfactory-mediated behaviour caused by elevated CO2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO2 will impact the other key part of the predator-prey interaction - the predators. We investigated the effects of elevated CO2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO2 levels or one of two elevated CO2 levels (~600 µatm or ~950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO2treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO2 treatment and feeding activity was lower for fish in the mid CO2treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coccolithophores play an important role in organic matter export due to their production of the mineral calcite that can act as ballast. Recent studies indicated that calcification in coccolithophores may be affected by changes in seawater carbonate chemistry. We investigated the influence of CO2 on the aggregation and sinking behaviour of the coccolithophore Emiliania huxleyi (PML B92/11) during a laboratory experiment. The coccolithophores were grown under low (~180 µatm), medium (~380 µatm), and high (~750 µatm) CO2 conditions. Aggregation of the cells was promoted using roller tables. Size and settling velocity of aggregates were determined during the incubation using video image analysis. Our results indicate that aggregate properties are sensitive to changes in the degree of ballasting, as evoked by ocean acidification. Average sinking velocity was highest for low CO2 aggregates (~1292 m d-1) that also had the highest particulate inorganic to particulate organic carbon (PIC/POC) ratio. Lowest PIC/POC ratios and lowest sinking velocity (~366 m d-1) at comparable sizes were observed for aggregates of the high CO2 treatment. Aggregates of the high CO2 treatment showed a 4-fold lower excess density (~4.2*10**-4 g cm**-3) when compared to aggregates from the medium and low CO2 treatments (~1.7 g*10**-3 cm**-3). We also observed that more aggregates formed in the high CO2 treatment, and that those aggregates contained more bacteria than aggregates in the medium and low CO2 treatment. If applicable to the future ocean, our findings suggest that a CO2 induced reduction of the calcite content of aggregates could weaken the deep export of organic matter in the ocean, particularly in areas dominated by coccolithophores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth and development of the aragonitic CaCO3 otoliths of teleost fish could be vulnerable to processes resulting from ocean acidification. The potential effects of an increase in atmospheric CO2 on the calcification of the otoliths were investigated by rearing Atlantic cod Gadus morhua L. larvae in 3 pCO2 concentrations-control (370 µatm), medium (1800 µatm) and high (4200 µatm)-from March to May 2010. Increased otolith growth was observed in 7 to 46 d post hatch (dph) cod larvae at elevated pCO2 concentrations. The sagittae and lapilli were usually largest in the high pCO2 treatment followed by the medium and control treatments. The greatest difference in mean otolith surface area (normalized to fish length) was for sagittae at 11 dph, with medium and high treatments being 46 and 43% larger than the control group, respectively. There was no significant pCO2 effect on the shape of the otoliths nor were there any trends in the fluctuating asymmetry, defined as the difference between the right and left sides, in relation to the increase in otolith growth from elevated pCO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment-related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 µg Gum Xanthan eq /l compared to 269 µg Gum Xanthan eq /l in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tris(2-ethylhexyl) trimellitate (TOTM) was recently suggested as a reference fluid for industrial use associated with high viscosity at elevated temperature and pressure. Viscosity and density data have already been published on one sample covering the temperature range (303-373) K and at pressures up to about 65 MPa. The viscosity covered a range from about (9 to 460) mPa s. In the present article we study several other characteristics of TOTM that must be available if it were to be adopted as a standard. First, we present values for the viscosity and density obtained with a different sample of TOTM to examine the important feature of consistency among different samples. Vibrating-wire viscosity measurements were performed at pressures from (5 to 100) MPa, along 6 isotherms between (303 and 373) K. Density measurements were carried out from (293 to 373) K up to 68 MPa, along 4 isotherms, using an Anton Paar DMA HP vibrating U-tube densimeter. Secondly, we report a study of the effect of water contamination on the viscosity of TOTM, performed using an Ubbelhode viscometer under atmospheric pressure. Finally, in order to support the use of TOTM as a reference liquid for the calibration of capillary viscometers, values of its surface tension, obtained by the pendant drop method, are provided. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose.: To evaluate the levels of dinucleotides diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) in tears of patients wearing rigid gas permeable (RGP) contact lenses on a daily wear basis and of patients wearing reverse-geometry RGP lenses overnight for orthokeratology treatment. Methods.: Twenty-two young volunteers (10 females, 12 males; 23.47 ± 4.49 years) were fitted with an alignment-fit RGP lens (paflufocon B) for a month, and after a 15-day washout period they were fitted with reverse-geometry RGP lenses for corneal reshaping (paflufocon D) for another month. During each period, tears were collected at baseline day 1, 7, 15, and 28. Ap4A and Ap5A were measured by high-pressure liquid chromatography (HPLC). Additionally, corneal staining, break-up time (BUT), Schirmer test, and dryness symptoms were evaluated. Results.: Ap4A concentrations increased significantly from baseline during the whole period of daily wear of RGP lenses (P < 0.001); concentration was also significantly higher than in the orthokeratology group, which remained at baseline levels during the study period except at day 1 (P < 0.001) and day 28 (P = 0.041). While BUT and Schirmer remained unchanged in both groups, discomfort and dryness were significantly increased during alignment-fit RGP daily wear but not during the orthokeratology period. Conclusions.: Daily wear of RGP lenses increased the levels of Ap4A due to mechanical stimulation by blinking of the corneal epithelium, and this is associated with discomfort. Also, orthokeratology did not produce symptoms or signs of ocular dryness, which could be a potential advantage over soft contact lenses in terms of contact lens-induced dryness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freeze drying technology can give good quality attributes of vegetables and fruits in terms of color, nutrition, volume, rehydration kinetics, stability during storage, among others, when compared with solely air dried ones. However, published scientific works showed that treatments applied before and after air dehydration are effective in food attributes, improving its quality. Therefore, the hypothesis of the present thesis was focus in a vast research of scientific work that showed the possibility to apply a pre-treatment and a post-treatment to food products combined with conventional air drying aiming being close, or even better, to the quality that a freeze dried product can give. Such attributes are the enzymatic inactivation, stability during storage, drying and rehydration kinetics, color, nutrition, volume and texture/structure. With regard to pre-treatments, the ones studied along the present work were: water blanching, steam blanching, ultrasound, freezing, high pressure and osmotic dehydration. High electric pulsed field was also studied but the food attributes were not explained on detailed. Basically, water and steam blanching showed to be adequate to inactivate enzymes in order to prevent enzymatic browning and preserve the product quality during long storage periods. With regard to ultrasound pre-treatment the published results pointed that ultrasound is an effective pre-treatment to reduce further drying times, improve rehydration kinetics and color retention. On the other hand, studies showed that ultrasound allow sugars losses and, in some cases, can lead to cell disruption. For freezing pre-treatment an overall conclusion was difficult to draw for some food attributes, since, each fruit or vegetable is unique and freezing comprises a lot of variables. However, for the studied cases, freezing showed to be a pre-treatment able to enhance rehydration kinetics and color attributes. High pressure pre-treatment showed to inactivate enzymes improving storage stability of food and showed to have a positive performance in terms of rehydration. For other attributes, when high pressure technology was applied, the literature showed divergent results according with the crops used. Finally, osmotic dehydration has been widely used in food processing to incorporate a desired salt or sugar present in aqueous solution into the cellular structure of food matrix (improvement of nutrition attribute). Moreover, osmotic dehydration lead to shorter drying times and the impregnation of solutes during osmose allow cellular strengthens of food. In case of post-treatments, puffing and a new technology denominated as instant controlled pressure drop (DIC) were reported in the literature as treatments able to improve diverse Abstract Effect of Pre-treatments and Post-treatments on Drying Products x food attributes. Basically, both technologies are similar where the product is submitted to a high pressure step and the process can make use of different heating mediums such as CO2, steam, air and N2. However, there exist a significant difference related with the final stage of both which can comprise the quality of the final product. On the other hand, puffing and DIC are used to expand cellular tissues improving the volume of food samples, helping in rehydration kinetics as posterior procedure, among others. The effectiveness of such pre and/or post-treatments is dependent on the state of the vegetables and fruits used which are also dependent of its cellular structure, variety, origin, state (fresh, ripe, raw), harvesting conditions, etc. In conclusion, as it was seen in the open literature, the application of pre-treatments and post-treatments coupled with a conventional air dehydration aim to give dehydrated food products with similar quality of freeze dried ones. Along the present Master thesis the experimental data was removed due to confidential reasons of the company Unilever R&D Vlaardingen

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zero-carbon powertrains development has become one of the main challenges for automotive industries around the world. Following this guideline, several approaches such as powertrain electrification, advanced combustions, and hydrogen internal combustion engines have been aimed to achieve the goal. Low Temperature Combustions, characterized by a simultaneous reduction of fuel consumption and emissions, represent one of the most studied solutions moving towards a sustainable mobility. Previous research demonstrate that Gasoline partially premixed Compression Ignition combustion is one of the most promising LTC. Mainly characterized by the high-pressure direct-injection of gasoline and the spontaneous ignition of the premixed air-fuel mixture, GCI combustion has shown a good potential to achieve the high thermal efficiency and low pollutants in compression ignited engines required by future emission regulations. Despite its potential, GCI combustion might suffer from low combustion controllability and stability, because gasoline spontaneous ignition is significantly affected by slight variations of the local in-cylinder thermal conditions. Therefore, to properly control GCI combustion assuring the maximum performance, a deep knowledge of the combustion process, i.e., gasoline auto-ignition and the effect of the control parameters on the combustion and pollutants, is mandatory. This PhD dissertation focuses on the study of GCI combustion in a light-duty compression ignited engine. Starting from a standard 1.3L diesel engine, this work describes the activities made moving toward the full conversion of the engine. A preliminary study of the GCI combustion was conducted in a “Single-Cylinder” engine configuration highlighting combustion characteristics and dependencies on the control parameters. Then, the full engine conversion was performed, and a wide experimental campaign allowed to confirm the benefits of this advanced combustion methodologies in terms of pollutants and thermal efficiency. The analysis of the in-cylinder pressure signal allowed to study in depth the GCI combustion and develop control-oriented models aimed to improve the combustion stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of poorly water soluble molecules in pharmaceutical area has grown. Since these molecules exhibit low oral bioavailability, they are not used in intravenous administrations. Therefore, it is necessary to develop their new formulations with the aim to increase their oral bioavailabilities as to enable intravenous applications. One of the few possibilities in achieving this is a nanonization process that can produce crystals smaller than 1 μm by high pressure homogenization and without use of organic solvents. This mini-review describes technical aspects of the nanocrystal production, morphological aspects (polymorphisms), the market relevance of the nanocrystals products that are already in clinical phase or at the market, as well as, perspectives for the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poorly soluble drugs have low bioavailability, representing a major challenge for the pharmaceutical industry. Processing drugs into the nanosized range changes their physical properties, and these are being used in pharmaceutics to develop innovative formulations known as Nanocrystals. Use of nanocrystals to overcome the problem of low bioavailability, and their production using different techniques such as microfluidization or high pressure homogenization, was reviewed in this paper. Examples of drugs, cosmetics and nutraceutical ingredients were also discussed. These technologies are well established in the pharmaceutical industry and are approved by the Food and Drug Administration.