866 resultados para Grid Connection
Resumo:
Environmental concerns and fossil fuel shortage put pressure on both power and transportation systems. Electric vehicles (EVs) are thought to be a good solution to these problems. With EV adoption, energy flow is two way: from grid to vehicle and from vehicle to grid, which is known as vehicle-to-grid (V2G) today. This paper considers electric power systems and provides a review of the impact of V2G on power system stability. The concept and basics of V2G technology are introduced at first, followed by a description of EV application in the world. Several technical issues are detailed in V2G modeling and capacity forecasting, steady-state analysis and stability analysis. Research trends of such topics are declared at last.
Resumo:
The increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in the Smart Grid has exposed them to a wide range of cyber-security issues, and there are a multitude of potential access points for cyber attackers. This paper presents a SCADA-specific cyber-security test-bed which contains SCADA software and communication infrastructure. This test-bed is used to investigate an Address Resolution Protocol (ARP) spoofing based man-in-the-middle attack. Finally, the paper proposes a future work plan which focuses on applying intrusion detection and prevention technology to address cyber-security issues in SCADA systems.
Resumo:
Greater complexity and interconnectivity across systems embracing Smart Grid technologies has meant that cyber-security issues have attracted significant attention. This paper describes pertinent cyber-security requirements, in particular cyber attacks and countermeasures which are critical for reliable Smart Grid operation. Relevant published literature is presented for critical aspects of Smart Grid cyber-security, such as vulnerability, interdependency, simulation, and standards. Furthermore, a preliminary study case is given which demonstrates the impact of a cyber attack which violates the integrity of data on the load management of real power system. Finally, the paper proposes future work plan which focuses on applying intrusion detection and prevention technology to address cyber-security issues. This paper also provides an overview of Smart Grid cyber-security with reference to related cross-disciplinary research topics.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
Optimal fault ride-through (FRT) conditions for a doubly-fed induction generator (DFIG) during a transient grid fault are analyzed with special emphasis on improving the active power generation profile. The transition states due to crowbar activation during transient faults are investigated to exploit the maximum power during the fault and post-fault period. It has been identified that operating slip, severity of fault and crowbar resistance have a direct impact on the power capability of a DFIG, and crowbar resistance can be chosen to optimize the power capability. It has been further shown that an extended crowbar period can deliver enhanced inertial response following the transient fault. The converter protection and drive train dynamics have also been analyzed while choosing the optimum crowbar resistance and delivering enhanced inertial support for an extended crowbar period.
Resumo:
The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.
Resumo:
This paper investigates the pull-out behaviour (particularly the bearing resistance) of a steel grid reinforcement embedded in silty sand using laboratory tests and numerical analyses. It is demonstrated that the various common analytical equations for calculating the bearing component of pull-out resistance give a wide range of calculated values, up to about 200% disparity. The disparity will increase further if the issue of whether to use the peak or critical state friction angle is brought in. Furthermore, these equations suggest that the bearing resistance factor, N, is only a function of soil friction angle which is not consistent with some design guidelines. In this investigation, a series of large scale laboratory pull-out tests under different test pressures were conducted. The test results unambiguously confirmed that the N factor is a function of test pressure. A modified equation for calculating N is also proposed. To have more in-depth understanding of the pull-out behaviour, the tests were modelled numerically. The input parameters for the numerical analysis were obtained from laboratory triaxial tests. The analysis results were compared with the experimental results. Good agreement between experimental and numerical results was achieved if the strain-softening behaviour from peak strength to critical state condition was captured by the soil model used. © 2013 Elsevier Ltd.
Resumo:
In this paper a model of grid computation that supports both heterogeneity and dynamicity is presented. The model presupposes that user sites contain software components awaiting execution on the grid. User sites and grid sites interact by means of managers which control dynamic behaviour. The orchestration language ORC [9,10] offers an abstract means of specifying operations for resource acquisition and execution monitoring while allowing for the possibility of non-responsive hardware. It is demonstrated that ORC is sufficiently expressive to model typical kinds of grid interactions.
Resumo:
Following earlier work demonstrating the utility of Orc as a means of specifying and reasoning about grid applications we propose the enhancement of such specifications with metadata that provide a means to extend an Orc specification with implementation oriented information. We argue that such specifications provide a useful refinement step in allowing reasoning about implementation related issues ahead of actual implementation or even prototyping. As examples, we demonstrate how such extended specifications can be used for investigating security related issues and for evaluating the cost of handling grid resource faults. The approach emphasises a semi-formal style of reasoning that makes maximum use of programmer domain knowledge and experience.
Resumo:
Loss-of-mains protection is an important component of the protection systems of embedded generation. The role of loss-of-mains is to disconnect the embedded generator from the utility grid in the event that connection to utility dispatched generation is lost. This is necessary for a number of reasons, including the safety of personnel during fault restoration and the protection of plant against out-of-synchronism reclosure to the mains supply. The incumbent methods of loss-of-mains protection were designed when the installed capacity of embedded generation was low, and known problems with nuisance tripping of the devices were considered acceptable because of the insignificant consequence to system operation. With the dramatic increase in the installed capacity of embedded generation over the last decade, the limitations of current islanding detection methods are no longer acceptable. This study describes a new method of loss-of-mains protection based on phasor measurement unit (PMU) technology, specifically using a low cost PMU device of the authors' design which has been developed for distribution network applications. The proposed method addresses the limitations of the incumbent methods, providing a solution that is free of nuisance tripping and has a zero non-detection zone. This system has been tested experimentally and is shown to be practical, feasible and effective. Threshold settings for the new method are recommended based on data acquired from both the Great Britain and Ireland power systems.
Resumo:
Due to the intermittent nature of renewable generation it is desirable to consider the potential of controlling the demand-side load to smooth overall system demand. The architecture and control methodologies of such a system on a large scale would require careful consideration. Some of these considerations are discussed in this paper; such as communications infrastructure, systems architecture, control methodologies and security. A domestic fridge is used in this paper as an example of a controllable appliance. A layered approach to smart-grid is introduced and it can be observed how each smart-grid component from physical cables, to the end-devices (or smart-applications) can be mapped to these set layers. It is clear how security plays an integral part in each component of the smart-grid so this is also an integral part of each layer. The controllable fridge is described in detail and as one potential smart-grid application which maps to the layered approach. A demonstration system is presented which involves a Raspberry Pi (a low-power, low-cost device representing the appliance controller).
Resumo:
A ditopic ligand (1), containing two tridentate bis(acylhydrazone) subunits and bearing both long alkyl chains and hydrogen-bonding groups, has been synthesised. Metal cation binding in the presence of a base leads to hierarchical self-assembly, forming first a neutral [2 x 2] grid-type complex (2) that hierarchically assembles into metallosupramolecular polymer gels in toluene.