979 resultados para Gravity waves
Resumo:
We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!
Resumo:
In this paper, based on the AdS(2)/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z -> infinity). In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z = 5 fixed point. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
We give a review on (a) elements of (2 + 1)-dimensional gravity, (b) some aspects of its relation to Chern-Simons theory, (c) its generalization to couple higher spins, and (d) cosmic singularity resolution as an application in the context of flat space higher spin theory. A knowledge of the Einstein-Hilbert action, classical non-Abelian gauge theory and some (negotiable amount of) maturity are the only pre-requisites.
Resumo:
I consider theories of gravity built not just from the metric and affine connection, but also other (possibly higher rank) symmetric tensor(s). The Lagrangian densities are scalars built from them, and the volume forms are related to Cayley's hyperdeterminants. The resulting diff-invariant actions give rise to geometric theories that go beyond the metric paradigm (even metric-less theories are possible), and contain Einstein gravity as a special case. Examples contain theories with generalizeations of Riemannian geometry. The 0-tensor case is related to dilaton gravity. These theories can give rise to new types of spontaneous Lorentz breaking and might be relevant for ``dark'' sector cosmology.
Resumo:
We establish the importance of modified Einstein's gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar's limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under-and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar's limit. Explosions of MG induced sub-and super-Chandrasekhar limiting mass WDs explain under-and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein's gravity and the uniqueness of Chandrasekhar's limit.
Resumo:
Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections. Here, we demonstrated that shock waves could be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results demonstrate for the first time that, shock waves, combined with antibiotic treatment can be used to treat biofilm infection on medical devices as well as in situ infections.
Resumo:
Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.
Resumo:
A new set of experimental pressure drop data, collected aboard the Russian IL-76MDK, is reported for bubbly airwater two-phase flow in a square channel with a cross-sectional area of 12x 12mm(2). The present data are compared to several frequently used empirical models, e.g. homogeneous model, Lockhart-Martinelli-Chisholm correlation and Friedel's model. It is shown that the predictions of the models mentioned above are generally not satisfied. A new homogeneous model is developed based on the analysis of the characteristics of bubbly two-phase flow at reduced gravity. It is tested with the present data and other data collected by other researchers in circular pipes. Some questions related to the present model are also discussed. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
The spherically converging detonation wave was numerically investigated by solving the one-dimensional multi-component Euler equations in spherical coordinates with a dispersion-controlled dissipative scheme. Finite rate and detailed chemical reaction models were used and numerical solutions were obtained for both a spherical by converging detonation in a stoichiometric hydrogen-oxygen mixture and a spherically focusing shock in air. The results showed that the post-shock pressure approximately arises to the same amplitude in vicinity of the focal point for the two cases, but the post-shock temperature level mainly depends on chemical reactions and molecular dissociations of a gas mixture. While the chemical reaction heat plays an important role in the early stage of detonation wave propagation, gas dissociations dramatically affect the post-shock flow states near the focal point. The maximum pressure and temperature, non-dimensionalized by their initial value, are approximately scaled to the propagation radius over the initial detonation diameter. The post-shock pressure is proportional to the initial pressure of the detonable mixture, and the post-shock temperature is also increased with the initial pressure, but in a much lower rate than that of the post-shock pressure.
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
A simple and feasible model feet the calculation of the gas transfer by bubble clouds is proposed in this article. N-2, O-2, and CO2 transferred by bubble clouds are obtained. At wind speed of 10 m/s, the calculated supersaturation of dissolved oxygen is 1.93-3.89% in agreement with the measurement.
Resumo:
An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.