912 resultados para Granting of the judicial recovery
Resumo:
Based on the an earlier CFD analysis of the performance of the gas-dynamically controlled laser cavity [1]it was found that there is possibility of optimizing the geometry of the diffuser that can bring about reductions in both size and cost of the system by examining the critical dimensional requirements of the diffuser. Consequently,an extensive CFD analysis has been carried out for a range of diffuser configurations by simulating the supersonic flow through the arrangement including the laser cavity driven by a bank of converging – diverging nozzles and the diffuser. The numerical investigations with 3D-RANS code are carried out to capture the flow patterns through diffusers past the cavity that has multiple supersonic jet interactions with shocks leading to complex flow pattern. Varying length of the diffuser plates is made to be the basic parameter of the study. The analysis reveals that the pressure recovery pattern during the flow through the diffuser from the simulation, being critical for the performance of the laser device shows its dependence on the diffuser length is weaker beyond a critical lower limit and this evaluation of this limit would provide a design guideline for a more efficient system configuration.The observation based on the parametric study shows that the pressure recovery transients in the near vicinity of the cavity is not affected for the reduction in the length of the diffuser plates up to its 10% of the initial size, indicating the design in the first configuration that was tested experimentally has a large factor of margin. The flow stability in the laser cavity is found to be unaffected since a strong and stable shock is located at the leading edge of the diffuser plates while the downstream shock and flow patterns are changed, as one would expect. Results of the study for the different lengths of diffusers in the range of 10% to its full length are presented, keeping the experimentally tested configuration used in the earlier study [1] as the reference length. The conclusions drawn from the analysis is found to be of significance since it provides new design considerations based on the understanding of the intricacies of the flow, allowing for a hardware optimization that can lead to substantial size reduction of the device with no loss of performance.
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A paradigm shift from hard to flexible, organic-based optoelectronics requires fast and reversible mechanical response from actuating materials that are used for conversion of heat or light into mechanical motion. As the limits in the response times of polymer-based actuating materials are reached, which are inherent to the less-than-optimal coupling between the light/heat and mechanical energy in them, 1 a conceptually new approach to mechanical actuation is required to leapfrog the performance of organic actuators. Herein, we explore single crystals of 1,2,4,5-tetrabromobenzene (TBB) as actuating elements and establish relations between their kinematic profile and mechanical properties. Centimeter-size acicular crystals of TBB are the only naturally twinned crystals out of about a dozen known materials that exhibit the thermosalient effect-an extremely rare and visually impressive crystal locomotion. When taken over a phase transition, crystals of this material store mechanical strain and are rapidly self-actuated to sudden jumps to release the internal strain, leaping up to several centimeters. To establish the structural basis for this colossal crystal motility, we investigated the mechanical profile of the crystals from macroscale, in response to externally induced deformation under microscope, to nanoscale, by using nanoindentation. Kinematic analysis based on high-speed recordings of over 200 twinned TBB crystals exposed to directional or nondirectional heating unraveled that the crystal locomotion is a kinematically complex phenomenon that includes at least six kinematic effects. The nanoscale tests confirm the highly elastic nature, with an elastic deformation recovery (60%) that is far superior to those of molecular crystals reported earlier. This property appears to be critical for accumulation of stress required for crystal jumping. Twinned crystals of TBB exposed to moderate directional heating behave as all-organic analogue of a bimetallic `strip, where the lattice misfit between the two crystal components drives reveriible deformation of the crystal.
Resumo:
A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.
Resumo:
In order to further investigate nanoindentation data of film-substrate systems and to learn more about the mechanical properties of nanometer film-substrate systems, two kinds of films on different substrate systems have been tested with a systematic variation in film thickness and substrate characteristics. The two kinds of films are aluminum and tungsten, which have been sputtered on to glass and silicon substrates, respectively. Indentation experiments were performed with a Nano Indent XP II with indenter displacements typically about two times the nominal film thicknesses. The resulting data are analyzed in terms of load-displacement curves and various comparative parameters, such as hardness, Young's modulus, unloading stiffness and elastic recovery. Hardness and Young's modulus are investigated when the substrate effects are considered. The results show how the composite hardness and Young's modulus are different for different substrates, different films and different film thicknesses. An assumption of constant Young's modulus is used for the film-substrate system, in which the film and substrate have similar Young's moduli. Composite hardness obtained by the Joslin and Oliver method is compared with the directly measured hardness obtained by the Oliver and Pharr method.
Resumo:
We evaluate the management of the Northern Stock of Hake during 1986-2001. A stochastic bioeconomic model is calibrated to match the main features of this fishing ground. We show how catches, biomass stock and profits would have been if the optimal Common Fisheries Policy (CFP) consistent with the target biomass implied by the Fischler’s Recovery Plan had been implemented. The main finding are: i) an optimal CFP would have generated profits of more than 667 millions euros, ii) if side-payments are allowed (implemented by ITQ’s, for example) these profits increase 26%.
Resumo:
EXECUTIVE SUMMARY INTRODUCTION OVERVIEW OF INTERNATIONAL EBM HISTORY References CANADA Overview Activities to date Integrated Management implementation in Canada Objectives, indicators and reference points Assessment approaches Research directions for the future Management directions for the future References JAPAN Overview Conservation and sustainable use of marine living resources Harvest control by TAC system Stock Recovery Plan and effort regulation system Stock enhancement by hatchery-produced juvenile release Conservation and sustainable develop-ment on coastal waters The implementation of ecosystem-based management PEOPLE’S REPUBLIC OF CHINA Overview Current actions Output control Input control Summer fishing ban Enhance ecosystem health REPUBLIC OF KOREA Initiatives and actions of ecosystem-based management in Korea Current ecosystem-based management initiatives in Korea Precautionary TAC-based fishery management Closed fishing season/areas Fish size- and sex-controls Fishing gear design restrictions Marine protected areas (MPA) RUSSIA Existing and anticipated ecosystem-based management initiatives Issues related to the implementation of ecosystem-based management UNITED STATES OF AMERICA Definitions and approaches to ecosystem-based fishery management in the United States Present U.S. legislative mandates relating to ecosystem-based fishery management Target species Bycatch species Threatened or endangered species Habitats Food webs Ecosystems Integration of legislative mandates into an ecosystem approach Scientific issues in implementing ecosystem-based approaches References DISCUSSION AND RECOMMENDATIONS APPENDICES Appendix 10.1 Study group membership and participants Appendix 10.2 Terminology definitions Appendix 10.3 Present state of implementing ecosystem-based fishery management in Alaska: Alaska groundfish fisheries Appendix 10.4 Present state of implementing ecosystem-based fishery management off the West Coast of the United States: Pacific Coast groundfish fisheries Appendix 10.5 Descriptions of multi-species and ecosystem models developed or under development in the U.S. North Pacific region that might be used to predict effects of fishing on ecosystems Appendix 10.6 A potential standard reporting format (developed by Australia, and currently being used by the U.S.A in their contribution to this report) (83 page document)
Resumo:
The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)
Resumo:
This report documents abundance and cover for selected elements of the benthic coral reef assemblage at the site of the 1984 grounding of the M/V Wellwood on Molasses Reef, Florida Keys. The purpose of the effort was to establish a pre-construction baseline before the installation of reef modules at the site. The installation process is intended to stabilize fractured substrates that were recently exposed by storm impacts, and to provide three-dimensional relief in order to enhance reef community recovery. It is hoped that the restoration effort will result in a biological assemblage with the character of the transition community that would exist there had the incident not occurred. To date, the assemblage has developed the character of a comparatively featureless hard ground similar in composition to hard ground areas and transition zones surrounding the grounding site. These data will allow scientists and resource managers to better track the trajectory of recovery following the installation of modules. Direct counts of scleractinian and gorgonian corals, hydrocorals of the genus Millepora, and zoanthids of the genus Palythoa were made in three areas within and around the grounding site. The site is poorly developed with respect to scleractinian colony size and cover compared to surrounding areas. Key scleractinian species necessary for the development of topographic relief in the area denuded by the grounding are not well represented in the current community. Though gorgonian cover and richness is similar in all study areas, gorgonian community recovery in the damaged area is not complete. Unlike surrounding areas, one species, Pseudopterogorgia americana, accounts for over half of all corals at the grounding site, over 80% of all gorgonians, and nearly all the coral cover. Based on these findings and other observations made in the 18 years since the grounding, recommendations are made that should be considered in the course of human intervention targeted at stabilizing and enhancing the site. (PDF contains 24 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop entitled, "Biological Platforms as Sensor Technologies and their Use as Indicators for the Marine Environment" was held in Seward, Alaska, September 19 - 21,2007. The workshop was co-hosted by the University of Alaska Fairbanks (UAF) and the Alaska SeaLife Center (ASLC). The workshop was attended by 25 participants representing a wide range of research scientists, managers, and manufacturers who develop and deploy sensory equipment using aquatic vertebrates as the mode of transport. Eight recommendations were made by participants at the conclusion of the workshop and are presented here without prioritization: 1. Encourage research toward development of energy scavenging devices of suitable sizes for use in remote sensing packages attached to marine animals. 2. Encourage funding sources for development of new sensor technologies and animal-borne tags. 3. Develop animal-borne environmental sensor platforms that offer more combined systems and improved data recovery methodologies, and expand the geographic scope of complementary fixed sensor arrays. 4. Engage the oceanographic community by: a. Offering a mini workshop at an AGU ocean sciences conference for people interested in developing an ocean carbon program that utilizes animal-borne sensor technology. b. Outreach to chemical oceanographers. 5. Min v2d6.sheepserver.net e and merge technologies from other disciplines that may be applied to marine sensors (e.g. biomedical field). 6. Encourage the NOAA Permitting Office to: a. Make a more predictable, reliable, and consistent permitting system for using animal platforms. b. Establish an evaluation process. c. Adhere to established standards. 7. Promote the expanded use of calibrated hydrophones as part of existing animal platforms. 8. Encourage the Integrated Ocean Observing System (IOOS) to promote animal tracking as effective samplers of the marine environment, and use of animals as ocean sensor technology platforms. [PDF contains 20 pages]
Resumo:
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere. Palabras clave
Resumo:
This thesis presents an experimental investigation of the axisymmetric heat transfer from a small scale fire and resulting buoyant plume to a horizontal, unobstructed ceiling during the initial stages of development. A propane-air burner yielding a heat source strength between 1.0 kW and 1.6 kW was used to simulate the fire, and measurements proved that this heat source did satisfactorily represent a source of buoyancy only. The ceiling consisted of a 1/16" steel plate of 0.91 m. diameter, insulated on the upper side. The ceiling height was adjustable between 0.5 m and 0.91 m. Temperature measurements were carried out in the plume, ceiling jet, and on the ceiling.
Heat transfer data were obtained by using the transient method and applying corrections for the radial conduction along the ceiling and losses through the insulation material. The ceiling heat transfer coefficient was based on the adiabatic ceiling jet temperature (recovery temperature) reached after a long time. A parameter involving the source strength Q and ceiling height H was found to correlate measurements of this temperature and its radial variation. A similar parameter for estimating the ceiling heat transfer coefficient was confirmed by the experimental results.
This investigation therefore provides reasonable estimates for the heat transfer from a buoyant gas plume to a ceiling in the axisymmetric case, for the stagnation region where such heat transfer is a maximum and for the ceiling jet region (r/H ≤ 0.7). A comparison with data from experiments which involved larger heat sources indicates that the predicted scaling of temperatures and heat transfer rates for larger scale fires is adequate.