958 resultados para Gram-negative bacilli
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Twelve novel 4-thiazolidinone derivatives (2a-l) have been synthesized by reacting formilpyridine thiosemicarbazones (1a-l) and anhydride maleic in toluene. Their chemical structures were confirmed by IR, ¹H and 13C NMR. The new compounds were submitted to in vitro evaluation against pathogenic Gram-positive, Gram-negative bacteria and yeasts. The findings obtained showed that the compounds 2a, 2d, 2e and 2g were effective against some of the bacterial strains used, whereas the compounds 2d, 2e and 2i exhibited a moderate antifungal activity against the yeast strains evaluated. An initial structure activity relationship (SAR) was established.
Resumo:
The antimicrobial properties of the hexane, hexane/EtOAc and methanol fractions of the fresh petioles of Sagittaria montevidensis ssp montevidensis (Alismataceae) were evaluated against fungi and Gram-negative and Gram-positive bacteria. A new abietatriene-type diterpenoid, 3β,7α-dihydroxi-abieta-8,11,13-triene and the known 3β-hydroxy-abieta-8,11,13-trien-7-one were isolated from the most active fraction tested and the structures of these compounds were elucidated by data including IR, EIMS, and 1D and 2D NMR spectra.
Resumo:
Tetracyclines exhibits activity to a broad range of Gram-negative and Gram-positive bacteria and this fact allied to the low toxicity, low cost, and the advantage of administration by oral route led to their indiscriminate use, which caused the appearance of bacterial resistance to these agents, wich has restricted its clinical utility, though new applications have emerged. On the other hand, the glycylcyclines, semi-synthetic products are similar to tetracyclines, which are active against many bacteria resistant to tetracycline and other classes of antibiotics. The purpose of this paper is to give an overview of this important class of antibiotics focusing on its coordination chemistry and possible applications.
Resumo:
Antibiotic resistance has been growing at an alarming rate and consequently the arsenal of effective antibiotics against Gram-negative and Gram-positive bacteria has dropped dramatically. In this sense there is a strong need to produce new substances that not only have good spectrum of activity, but having new mechanisms of action. In this regard, this paper emphasizes the coordination of metals to antibiotics as a strategy for reversing antibiotic resistance and production of new drugs, with a special focus on quinolones, fluoroquinolones, sulfonamides and tetracyclines.
Resumo:
Mercury (Hg) occurs in the environment as a natural and anthropogenic element, and through the years the accumulation of mercury has affected the integrity of ecosystems and human health. This study presents a screening of microorganisms resistant to organic and inorganic mercury, the determination of the minimum inhibitory concentration of Hg, the estimation of the mercury volatilization by selected microorganisms and the dynamics of volatilization. Eight Gram-negative bacteria resistant to high concentrations of mercury (60 to 210 mg L-1) were selected, and these isolates showed ability to volatilize the metal. The dynamics of the volatilization of the Proteus mirabilis M50C demonstrated that in only 4 h of incubation it was possible to volatilize 72% of the mercury present in the culture. The results showed promising application for bioremediation strategies.
Resumo:
A series of 15 ω-aminoalkoxylxanthones containing methyl, ethyl, propyl, tert-butylamino and piperidinyl moieties were synthesized from a natural xanthone isolated from a lichen species. These compounds were tested for their in vitro antibacterial properties against Gram-positive and Gram-negative bacteria and cytotoxicity against a number of human tumor cell lines was too evaluated. The newly synthesized derivatives revealed selective activity against Staphylococcus aureus (Gram-positive), and the most promising results are for a multidrug resistant strain, for which six of these compounds showed good activity (MICs 4 µg/mL). Many derivatives inhibited tumor cells growth and most compounds were active on multiple lines.
Resumo:
The essential oils from leaves, stems and fruits of Piper divaricatum were analyzed by GC-MS. The tissues showed high safrole content: leaves (98%), fruits (87%) and stems (83%), with yields of 2.0, 4.8 and 1.7%, respectively. This is a new alternative source of safrole, a compound widely used as a flavoring agent and insecticide. The leaf's oil showed antibacterial activity against gram-negative bacteria while safrole was active against Salmonella Typhimurium and Pseudomonas aeruginosa. In addition, the study of circadian rhythm of the safrole concentration in the essential oils of leaves showed a negligible variation of 92 to 98%.
Resumo:
Erwinia carotovora subsp. atroseptica (Eca), E. carotovora subsp. carotovora (Ecc) and E. chrysanthemi (Ech) may cause potato (Solanum tuberosum) blackleg. To determine the occurrence of these pathogens in the conditions found in the State of Rio Grande do Sul (RS), potato plants showing blackleg symptoms were harvested from 22 fields in nine counties in Serra do Nordeste, Planalto, Depressão Central, and Grandes Lagoas, from September to December of 1999 (Spring-Summer season). Green pepper (Capsicum annuum) fruits were used as a host to enrich for pectolytic erwinia from potato stems with blackleg symptoms. Bacteria were subsequently isolated on non-selective medium. Isolates that were Gram-negative, facultatively anaerobic, and pitted crystal-violet-pectate medium were tested for biochemical traits to identify the species and subspecies. Four hundred strains were identified as either Eca, Ecc or Ech. Although the three erwinias were found in RS potato fields, only three strains of Ech were found in one field. Frequencies of Eca and Ecc were 55 and 42%, respectively. Eight strains could not be assigned based on the biochemical characterization.
Resumo:
The objective of this research was to develop a primer for a polymerase chain reaction specific for Xylella fastidiosa strains that cause Pierce's Disease (PD) in grapes (Vitis vinifera). The DNA amplification of 23 different strains of X. fastidiosa, using a set of primers REP1-R (5'-IIIICGICGIATCCIGGC-3') and REP 2 (5'-ICGICTTATCIGGCCTAC-3') using the following program: 94 ºC/2 min; 35 X (94 ºC/1 min, 45 ºC/1 min and 72 ºC/1 min and 30 s) 72 ºC/5 min, produced a fragment of 630 bp that differentiated the strains that cause disease in grapes from the other strains. However, REP banding patterns could not be considered reliable for detection because the REP1-R and REP 2 primers correspond to repetitive sequences, which are found throughout the bacterial genome. The amplified product of 630 bp was eluted from the agarose gel, purified and sequenced. The nucleotide sequence information was used to identify and synthesize an specific oligonucleotide for X. fastidiosa strains that cause Pierce's Disease denominated Xf-1 (5'-CGGGGGTGTAGGAGGGGTTGT-3') which was used jointly with the REP-2 primer at the following conditions: 94 ºC/2 min; 35 X (94 ºC/1 min, 62 ºC/1 min; 72 ºC/1 min and 30 s) 72 ºC/10 min. The DNAs isolated from strains of X. fastidiosa from other hosts [almond (Prumus amygdalus), citrus (Citrus spp.), coffee (Coffea arabica), elm (Ulmus americana), mulberry (Morus rubra), oak (Quercus rubra), periwinkle wilt (Catharantus roseus), plums (Prunus salicina) and ragweed (Ambrosia artemisiifolia)] and also from other Gram negative and positive bacteria were submitted to amplification with a pair of primers Xf-1/REP 2 to verify its specificity. A fragment, about 350 bp, was amplified only when the DNA from strains of X. fastidiosa isolated from grapes was employed.
Resumo:
The Co(II), Ni(II) and Cu(II) metal ions complexes of Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes (BATs) have been prepared and characterized by elemental analysis, conductivity measurements infrared, magnetic susceptibility, the electronic spectral data and thermal studies. Based on spectral and magnetic results, the ligands are tetradentate coordinating through the N and S-atoms of BATs; six-coordinated octahedral or distorted octahedral and some times four-coordinated square planar were proposed for these complexes. Activation energies computed for the thermal decomposition steps were compared. The ligands and their metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive, two gram-negative bacteria and two fungal species were found to vary from moderate to very strong.
Resumo:
Lipopolysacharide (LPS) present on the outer leaflet of Gram-negative bacteria is important for the adaptation of the bacteria to the environment. Structurally, LPS can be divided into three parts: lipid A, core and O-polysaccharide (OPS). OPS is the outermost and also the most diverse moiety. When OPS is composed of identical sugar residues it is called homopolymeric and when it is composed of repeating units of oligosaccharides it is called heteropolymeric. Bacteria synthesize LPS at the inner membrane via two separate pathways, Lipid A-core via one and OPS via the other. These are ligated together in the periplasmic space and the completed LPS molecule is translocated to the surface of the bacteria. The genes directing the OPS biosynthesis are often clustered and the clusters directing the biosynthesis of heteropolymeric OPS often contain genes for i) the biosynthesis of required NDP-sugar precursors, ii) glycosyltransferases needed to build up the repeating unit, iii) translocation of the completed O-unit to the periplasmic side of the inner membrane (flippase) and iv) polymerization of the repeating units to complete OPS. The aim of this thesis was to characterize the biosynthesis of the outer core (OC) of Yersinia enterocolitica serotype O:3 (YeO3). Y. enterocolitica is a member of the Gram-negative Yersinia genus and it causes diarrhea followed sometimes by reactive arthritis. The chemical structure of the OC and the nucleotide sequence of the gene cluster directing its biosynthesis were already known; however, no experimental evidence had been provided for the predicted functions of the gene products. The hypothesis was that the OC biosynthesis would follow the pathway described for heteropolymeric OPS, i.e. a Wzy-dependent pathway. In this work the biochemical activities of two enzymes involved in the NDP-sugar biosynthesis was established. Gne was determined to be a UDP-N-acetylglucosamine-4-epimerase catalyzing the conversion of UDP-GlcNAc to UDP-GalNAc and WbcP was shown to be a UDP-GlcNAc- 4,6-dehydratase catalyzing the reaction that converts UDP-GlcNAc to a rare UDP-2-acetamido- 2,6-dideoxy-d-xylo-hex-4-ulopyranose (UDP-Sugp). In this work, the linkage specificities and the order in which the different glycosyltransferases build up the OC onto the lipid carrier were also investigated. In addition, by using a site-directed mutagenesis approach the catalytically important amino acids of Gne and two of the characterized glycosyltranferases were identified. Also evidence to show the enzymes involved in the ligations of OC and OPS to the lipid A inner core was provided. The importance of the OC to the physiology of Y. enterocolitica O:3 was defined by determining the minimum requirements for the OC to be recognized by a bacteriophage, bacteriocin and monoclonal antibody. The biological importance of the rare keto sugar (Sugp) was also shown. As a conclusion this work provides an extensive overview of the biosynthesis of YeO3 OC as it provides a substantial amount of information of the stepwise and coordinated synthesis of the Ye O:3 OC hexasaccharide and detailed information of its properties as a receptor.
Resumo:
Synthesis, electronic, infrared, elemental micro analytical studies were carried on N-(benzothiazol-2-yl)trichloroethanamide [4] and N-(benzothiazol-2-yl)chloroethanamide [5]. They were also screened in vitro and in vivo for antibacterial activity. The results indicate that the compounds are very stable and that they show high antibacterial activities against both gram-positive and gram-negative bacteria tested. Both derivatives of 2-aminobenzothiazole were active against the multiresistant bacteria with IZD ranging from 9 -18 mm [5] and 9 - 20mm [4]. From the MIC results it is observed that the [5] derivative produced a better antibacterial activity than the [4] derivative. The lethal concentrations (LC50) of the compounds were also determined. Their solubilities and melting points were also determined.
Resumo:
Evolution of Bordetella pertussis post vaccination Whooping cough or pertussis is caused by the gram-negative bacterium Bordetella pertussis. It is a highly contiguous disease in the human respiratory tract. Characteristic of pertussis is a paroxysmal cough with whooping sound during gasps of breath after coughing episodes. It is potentially fatal to unvaccinated infants. The best approach to fight pertussis is to vaccinate. Vaccinations against pertussis have been available from the 1940s. Traditionally vaccines were whole-cell pertussis (wP) preparations as part of the combined diphtheria-tetanus-pertussis (DTP) vaccines. More recently acellular pertussis (aP) vaccines have replaced the wP vaccines in many countries. The aP vaccines are less reactogenic and can also be administered to school children and adults. There are several publications reporting variation in the i>B. pertussis virulence factors that are also aP vaccine antigens. This has occurred in the genes coding for pertussis toxin and pertactin about 15 to 30 years after the introduction of pertussis vaccines to immunisation programs. Resurgence of pertussis has also been reported in many countries with high vaccination coverage. In this study the evolution of B. pertussis was investigated in Finland, the United Kingdom, Poland, Serbia, China, Senegal and Kenya. These represent countries with a long history of high vaccination coverage with stable vaccines or changes in the vaccine formulation; countries which established high vaccination coverage late; and countries where vaccinations against pertussis were started late. With bacterial cytotoxicity and cytokine measurements, comparative genomic hybridisation, pulsed-field gel electrophoresis (PFGE), genotyping and serotyping it was found that changes in the vaccine composition can postpone the emergence of antigenic variants. It seems that the change in PFGE profiles and the loss of genetic material in the genome of B. pertussis are similar in most countries and the vaccine-induced immunity is selecting non-vaccine type strains. However, the differences in the formulation of the vaccines, the vaccination programs and in the coverage of pertussis vaccination have affected the speed and timing of these changes.
Resumo:
In addition to listeriosis which is relatively common in ruminants, there are three other uncommon suppurative intracranial processes (SIP) identifiable in adult ungulates as brain abscess, basilar empyema and suppurative meningitis. The present paper reports the epidemiological, clinical, laboratorial, pathological and microbiological findings of 15 domestic ruminants with SIP. A total of 15 animals were selected (eight sheep, four cattle and three goats); with the definitive diagnoses of basilar empyema (n=3), brain abscess (n=1), listeriosis (n=5) and suppurative meningitis (n=6). Hematology revealed leukocytosis with inversion of the lymphocyte/ neutrophil ratio in 4 cases. In the majority of animals, cerebrospinal fluid (CSF) presented light yellow coloration and cloudy aspect due to neutrophilic pleocytosis (15 - 997 leukocytes/µL). Microbiological culture of CSF or central nervous system (CNS) fragments resulted on isolation of Trueperella (Arcanobacterium) pyogenes,Listeria monocytogenes,Escherichia coli and Stenotrophomonas sp. In a goat with thalamic abscess, microbiological assay was not performed, but Gram positive bacilli type bacteria were observed in histology. The diagnosis of these outbreaks was based on the association of epidemiological, clinical, pathological and bacteriological findings; reiterating that the infectious component remains an important cause of CNS disease in domestic ruminants and also shows the need for dissemination of information about the most effective preventive measures for the ranchers.