964 resultados para Glacial landforms
Resumo:
Organic matter in Miocene glacial sediments in Hole 739C on the Antarctic Shelf represents erosional recycled continental material. Various indications of maturity in bulk organic matter, kerogens, and extracts imply that an exposed section of mature organic carbon-rich material was present during the Miocene. Based on biomarker, n-alkane, and kerogen analysis, a massive diamictite of early Eocene/Oligocene age at Hole 739C contains immature organic matter. Visual and pyrolysis analyses of the kerogens suggest a predominance of terrestrial organic matter in all samples from Hole 739C. A reversal of thermal maturities, i.e., more-mature overlying less-mature sections, may be related to redeposition generated from glacial erosion. Siliciclastic fluviatile sediments of Lower Cretaceous age from Hole 741A were analyzed. The organic matter from this hole contains immature aliphatic and aromatic biomarkers as well as a suite of odd carbon number-dominated nalkanes. Visual examination and pyrolysis analysis of the kerogen suggests that predominantly immature terrestrial organic matter is present at Hole 741A. The similarities between Hole 739C Unit V and Hole 741A suggest that the source of the organic matter in the glacial sediments in Unit V at Hole 739C could be Cretaceous in age and similar to sediments sampled at Hole 741A in Prydz Bay.
Resumo:
We present Holocene and last glacial maximum (LGM) oxygen and carbon isotope measurements on Planulina wuellerstorfi in six southeast Pacific cores. Sedimentation rates are low in this part of the ocean, and measurements were made on individual foraminiferal shells in order to identify the Holocene and glacial individuals on the basis of their extreme d18O. The new d13C data were combined with previous P. wuellerstorfi data for interpretation of global thermohaline circulation. Data from the Southern Ocean were examined closely for regional coherency and a few anomalous d13C values suspected of having productivity overprint were removed. The resulting global d13C distributions and gradients indicate that the deep water circulation was similar during the Holocene and LGM. This interpretation brings d13C data to a better agreement with Cd/Ca data and marks a sharp contrast with a widely held view based on d13C measurements that the glacial Southern Ocean was the terminus of the thermohaline circulation. The proposed presence of glacial North Atlantic Deep Water does not necessarily contradict the postulated presence of Glacial North Atlantic Intermediate Water.
Resumo:
Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.
Resumo:
Macrobenthic associations were investigated at 29 sampling stations with a semi-quantitative Agassiz trawl, ranging from the South Patagonian Icefield to the Straits of Magellan in the South Chilean fjord system. A total of 1,895 individuals belonging to 131 species were collected. 19 species belong to colonial organisms, mainly Bryozoa (17 species) and Octocorallia (2 species). The phylum Echinodermata was the most diverse in species number (47 species), with asteroids (25 species) and ophiuroids (13 species) being the best represented within this taxon. Polychaeta was the second dominant group in terms of species richness (46 species). Multidimensional scaling ordination (MDS) separated two station groups, one related to fjords and channels off the South Patagonian Icefield and the second one to stations surrounding the Straits of Magellan. 45 species account for 90% of the dissimilarity between these two groups. These differences can mainly be explained by the influence of local environmental conditions determined by processes closely related to the pres- ence/absence of glaciers. Abiotic parameters such as water depth, type of sediment and chemical features of the superficial sediment were not correlated with the numbers of individuals caught by the Agassiz trawl in each group of sampling stations.
Resumo:
A set of numerical equations is developed to estimate past sea surface temperatures (SST) from fossil Antarctic diatoms. These equations take into account both the biogeographic distribution and experimentally derived silica dissolution. The data represent a revision and expansion of a floral data base used previously and includes samples resulting from progressive opal dissolution experiments. Factor analysis of 166 samples (124 Holocene core top and 42 artificial samples) resolved four factors. Three of these factors depend on the water mass distribution (one Subantarctic and two Antarctic assemblages); factor 4 corresponds to a 'dissolution assemblage'. Inclusion of this factor in the data analysis minimizes the effect of opal dissolution on the assemblages and gives accurate estimates of SST over a wide range of biosiliceous dissolution. A transfer function (DTF 166/34/4) is derived from the distribution of these factors versus summer SST. Its standard error is +/- 1°C in the -1 to +10 °C summer temperature range. This transfer function is used to estimate SST changes in two southern ocean cores (43°S and 55°S) which cover the last climatic cycle. The time scale is derived from the changes in foraminiferal oxygen and carbon isotopic ratios. The reconstructed SST records present strong analogies with the air temperature record over Antarctica at the Vostok site, derived from changes in the isotopic ratio of the ice. This similarity may be used to compare the oceanic isotope stratigraphy and the Vostok time scale derived from ice flow model. The oceanic time scale, if taken at face value, would indicate that large changes in ice accumulation rates occurred between warm and cold periods.
Resumo:
We here present a compilation of planktic and benthic 14C reservoir ages for the Last Glacial Maximum (LGM) and early deglacial from 11 key sites of global ocean circulation in the Atlantic and Indo-Pacific Ocean. The ages were obtained by 14C plateau tuning, a robust technique to derive both an absolute chronology for marine sediment records and a high-resolution record of changing reservoir/ventilation ages (Delta14C values) for surface and deep waters by comparing the suite of planktic 14C plateaus of a sediment record with that of the atmospheric 14C record (Sarnthein et al., 2007, doi:10.1029/173GM13). Results published thus far used as atmospheric 14C reference U/Th-dated corals, the Cariaco planktic record, and speleothems (Fairbanks et al., 2005, doi:10.1016/j.quascirev.2005.04.007; Hughen et al., 2006, doi:10.1016/j.quascirev.2006.03.014; Beck et al., 2001, doi:10.1023/A:1008175728826). We have now used the varve-counted atmospheric 14C record of Lake Suigetsu terrestrial macrofossils (Ramsey et al., 2012, doi:10.1126/science.1226660) to recalibrate the boundary ages and reservoir ages of the seven published records directly to an atmospheric 14C record. In addition, the results for four new cores and further planktic results for four published records are given. Main conclusions from the new compilation are: (1) The Suigetsu atmospheric 14C record on its varve counted time scale reflects all 14C plateaus, their internal structures and relative length previously identified, but implies a rise in the average 14C plateau age by 200-700 14C yr during LGM and early deglacial times. (2) Based on different 14C ages of coeval atmospheric and planktic 14C plateaus, marine surface water Delta14C may have temporarily dropped to an equivalent of ~0 yr in low-latitude lagoon waters, but reached >2500 14C yr both in stratified subpolar waters and in upwelled waters such as in the South China Sea. These values differ significantly from a widely assumed constant global planktic Delta14C value of 400 yr. (3) Suites of deglacial planktic Delta14C values are closely reproducible in 14C records measured at neighboring core sites. (4) Apparent deep-water 14C ventilation ages (equivalents of benthic Delta14C), deduced from the sum of planktic Delta14C and coeval benthic-planktic 14C differences, vary from 500 up to >5000 yr in LGM and deglacial ocean basins.
Resumo:
We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 yr). By using a model that is able to explicitly simulate the sensor (d18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean d18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice-sheet. We observe a general pattern toward more enriched values for continental calcite d18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data-model comparison for calcite d18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a trong mean annual cooling between the LGM and present (>6°C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals that large positive calcite d18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive d18Osw anomaly for the north Indian Ocean that contrasts with a large negative d18Osw anomaly in the China Sea between the LGM and present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in d18Osw between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite d18O data. Nonetheless, our data-model comparison support a heterogeneous cooling of few degrees (2-4°C) in the LGM Ocean.
Resumo:
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10?ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10?ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.