866 resultados para Generalized Lebesgue Spaces
Resumo:
This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class of extended nonlinear polytopic-type parameterizations of certain dynamic systems.
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.
Resumo:
The simple model relating food conversion efficiency (K sub(1)) to body weight derived from the theoretical concepts behind von Bertalanffy's growth model, is extended here in the context of Pauly's generalization of that model. The exponent, which was fixed to 1/3 in the simple model, is in the extended model equivalent to 1-d, with d being the weight exponent of the anabolism term in Pauly's growth model. This makes the model applicable to fish for which the assumptions of the original (special) version of von Bertalanffy's growth model are violated.
Resumo:
A possibilidade da existência de átomos de hidrogênio estáveis em dimensões superiores a três é abordada. O problema da dimensionalidade é visto como um problema de Física, no qual relacionam-se algumas leis físicas com a dimensão espacial. A base da análise deste trabalho faz uso das equações de Schrödinger (não relativística) e de Dirac (relativística). Nos dois casos, utiliza-se a generalização tanto do setor cinemático bem como o setor de interação coulombiana para variar o parâmetro topológico dimensão. Para o caso não relativístico, os auto-valores de energia e as auto-funções são obtidas através do método numérico de Numerov. Embora existam soluções em espaços com dimensões superiores, os resultados obtidos no presente trabalho indicam que a natureza deve, de alguma maneira, se manifestar em um espaço tridimensional.