988 resultados para Gaussian assumption
Resumo:
We examine a problem with n players each facing the same binary choice. One choice is superior to the other. The simple assumption of competition - that an individual's payoff falls with a rise in the number of players making the same choice, guarantees the existence of a unique symmetric equilibrium (involving mixed strategies). As n increases, there are two opposing effects. First, events in the middle of the distribution - where a player finds itself having made the same choice as many others - become more likely, but the payoffs in these events fall. In opposition, events in the tails of the distribution - where a player finds itself having made the same choice as few others - become less likely, but the payoffs in these events remain high. We provide a sufficient condition (strong competition) under which an increase in the number of players leads to a reduction in the equilibrium probability that the superior choice is made.
Resumo:
A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1-4-mu m-diameter polystyrene spheres in a single-beam gradient trap using measurements of back-scattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10(-6) and 4 x 10(-6) N/m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction. (C) 1996 Optical Society of America.
Resumo:
High-frequency beach water table fluctuations due to wave run-up and rundown have been observed in the field [Waddell, 1976]. Such fluctuations affect the infiltration/exfiltration process across the beach face and the interstitial oxygenation process in the beach ecosystem. Accurate representation of high-frequency water table fluctuations is of importance in the modeling of (1) the interaction between seawater and groundwater, more important, the effects on swash sediment transport and (2) the biological activities in the beach ecosystem. Capillarity effects provide a mechanism for high-frequency water table fluctuations. Previous modeling approaches adopted the assumption of saturated flow only and failed to predict the propagation of high-frequency fluctuations in the aquifer. In this paper we develop a modified kinematic boundary condition (kbc) for the water table which incorporates capillarity effects. The application of this kbc in a boundary element model enables the simulation of high-frequency water table fluctuations due to wave run-up. Numerical tests were carried out for a rectangular domain with small-amplitude oscillations; the behavior of water table responses was found to be similar to that predicted by an analytical solution based on the one-dimensional Boussinesq equation. The model was also applied to simulate the water table response to wave run-up on a doping beach. The results showed similar features of water table fluctuations observed in the field. In particular, these fluctuations are standing wave-like with the amplitude becoming increasingly damped inland. We conclude that the modified kbc presented here is a reasonable approximation of capillarity effects on beach water table fluctuations. However, further model validation is necessary before the model can confidently be used to simulate high-frequency water table fluctuations due to wave run-up.
Resumo:
Computer modelling has shown that electrical characteristics of individual pixels may be extracted from within multiple-frequency electrical impedance tomography (MFEIT) images formed using a reference data set obtained from a purely resistive, homogeneous medium. In some applications it is desirable to extract the electrical characteristics of individual pixels from images where a purely resistive, homogeneous reference data set is not available. One such application of the technique of MFEIT is to allow the acquisition of in vivo images using reference data sets obtained from a non-homogeneous medium with a reactive component. However, the reactive component of the reference data set introduces difficulties with the extraction of the true electrical characteristics from the image pixels. This study was a preliminary investigation of a technique to extract electrical parameters from multifrequency images when the reference data set has a reactive component. Unlike the situation in which a homogenous, resistive data set is available, it is not possible to obtain the impedance and phase information directly from the image pixel values of the MFEIT images data set, as the phase of the reactive reference is not known. The method reported here to extract the electrical characteristics (the Cole-Cole plot) initially assumes that this phase angle is zero. With this assumption, an impedance spectrum can be directly extracted from the image set. To obtain the true Cole-Cole plot a correction must be applied to account for the inherent rotation of the extracted impedance spectrum about the origin, which is a result of the assumption. This work shows that the angle of rotation associated with the reactive component of the reference data set may be determined using a priori knowledge of the distribution of frequencies of the Cole-Cole plot. Using this angle of rotation, the true Cole-Cole plot can be obtained from the impedance spectrum extracted from the MFEIT image data set. The method was investigated using simulated data, both with and without noise, and also for image data obtained in vitro. The in vitro studies involved 32 logarithmically spaced frequencies from 4 kHz up to 1 MHz and demonstrated that differences between the true characteristics and those of the impedance spectrum were reduced significantly after application of the correction technique. The differences between the extracted parameters and the true values prior to correction were in the range from 16% to 70%. Following application of the correction technique the differences were reduced to less than 5%. The parameters obtained from the Cole-Cole plot may be useful as a characterization of the nature and health of the imaged tissues.
Resumo:
Background Meta-analysis is increasingly being employed as a screening procedure in large-scale association studies to select promising variants for follow-up studies. However, standard methods for meta-analysis require the assumption of an underlying genetic model, which is typically unknown a priori. This drawback can introduce model misspecifications, causing power to be suboptimal, or the evaluation of multiple genetic models, which augments the number of false-positive associations, ultimately leading to waste of resources with fruitless replication studies. We used simulated meta-analyses of large genetic association studies to investigate naive strategies of genetic model specification to optimize screenings of genome-wide meta-analysis signals for further replication. Methods Different methods, meta-analytical models and strategies were compared in terms of power and type-I error. Simulations were carried out for a binary trait in a wide range of true genetic models, genome-wide thresholds, minor allele frequencies (MAFs), odds ratios and between-study heterogeneity (tau(2)). Results Among the investigated strategies, a simple Bonferroni-corrected approach that fits both multiplicative and recessive models was found to be optimal in most examined scenarios, reducing the likelihood of false discoveries and enhancing power in scenarios with small MAFs either in the presence or in absence of heterogeneity. Nonetheless, this strategy is sensitive to tau(2) whenever the susceptibility allele is common (MAF epsilon 30%), resulting in an increased number of false-positive associations compared with an analysis that considers only the multiplicative model. Conclusion Invoking a simple Bonferroni adjustment and testing for both multiplicative and recessive models is fast and an optimal strategy in large meta-analysis-based screenings. However, care must be taken when examined variants are common, where specification of a multiplicative model alone may be preferable.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
We measured bone mineral content (BMC) and estimated calcium accretion in children to provide insight into dietary calcium requirements during growth. Anthropometric measurements were done semiannually and whole-body BMC was measured annually by dual-energy X-ray absorptiometry for 4 y in 228 children (471 scans in 113 boys and 507 scans in 115,girls). Mean values for BMC, skeletal area, and height were calculated for 1-y age groups from 9.5 to 19.5 y of age. Cross-sectional analysis of the pooled data gave peak height velocity and peak BMC velocity (PBMCV) and the ages at which these occurred (13.3 y in boys and 11.4 y in girls). PBMCV did not peak until 1.2 y after peak height velocity in boys and 1.6 y after peak height velocity in girls. Within 3 y on either side of PBMCV, boys had consistently higher BMC and BMC velocity compared with girls and the discrepancy increased steadily through puberty. Three years before PBMCV, BMC Values in girls were 69% of those in boys; 3 y after peak height velocity this proportion fell to 51%. PBMCV was 320 g/y in boys and 240 g/y in girls. Under the assumption that bone mineral is 32.2% calcium, these values corresponded to a daily calcium retention of 282 mg in boys and 212 mg in girls. Individual Values could be much greater. In one boy in a group of six subjects for whom there were enough data for individual analysis through puberty, PBMCV was 555 g Ca/y or 490 mg Ca/d. Such high skeletal demands for calcium require large dietary calcium intakes and such requirements may not be met immediately in some children.
Resumo:
Aims We have characterized the relative dispersion of vascular and extravascular markers in the limbs of three patients undergoing isolated limb perfusions with the cytotoxic melphalan for recurrent malignant melanoma both before and after melphalan dosing. Methods A bolus of injectate containing [Cr-51] labelled red blood cells, [C-14]-sucrose and [H-3]-water was injected into an iliac or femoral artery and outflow samples collected at 1 s intervals by a fraction collector. The radioactivity due to each isotype was analysed by either gamma [Cr-51] or beta [C-14 and H-3] counting. The moments of the outflow fraction-time profiles were estimated by a nonparametric (numerical integration) method and a parametric model (sum of two inverse Gaussian functions). Results The availability, mean transit time and normalised variance (CV2) obtained for labelled red blood cells, sucrose and water were similar before and after melphalan dosing and with the two methods of calculation but varied between the patients. Conclusions The vascular space is not well-stirred but characterized by a CV2 similar that reported previously for in situ rat hind limb and rat liver perfusions. A flow-limited blood-tissue exchange was observed for the permeating indicators. Administration of melphalan did not influence the distribution characteristics of the indicators.
Resumo:
Absorption kinetics of solutes given with the subcutaneous administration of fluids is ill-defined. The gamma emitter, technitium pertechnetate, enabled estimates of absorption rate to be estimated independently using two approaches. In the first approach, the counts remaining at the site were estimated by imaging above the subcutaneous administration site, whereas in the second approach, the plasma technetium concentration-time profiles were monitored up to 8 hr after technetium administration. Boluses of technetium pertechnetate were given both intravenously and subcutaneously on separate occasions with a multiple dosing regimen using three doses on each occasion. The disposition of technetium after iv administration was best described by biexponential kinetics with a V-ss of 0.30 +/- 0.11 L/kg and a clearance of 30.0 +/- 13.1 ml/min. The subcutaneous absorption kinetics was best described as a single exponential process with a half-life of 18.16 +/- 3.97 min by image analysis and a half-life of 11.58 +/- 2.48 min using plasma technetium time data. The bioavailability of technetium by the subcutaneous route was estimated to be 0.96 +/- 0.12. The absorption half-life showed no consistent change with the duration of the subcutaneous infusion. The amount remaining at the absorption site with time was similar when analyzed using image analysis, and plasma concentrations assuming multiexponential disposition kinetics and a first-order absorption process. Profiles of fraction remaining at the absorption sire generated by deconvolution analysis, image analysis, and assumption of a constant first-order absorption process were similar. Slowing of absorption from the subcutaneous administration site is apparent after the last bolus dose in three of the subjects and can De associated with the stopping of the infusion. In a fourth subject, the retention of technetium at the subcutaneous site is more consistent with accumulation of technetium near the absorption site as a result of systemic recirculation.
Resumo:
We analyze the properties of light beams carrying phase singularities, or optical vortices. The transformations of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible scenarios where additional vortices appear or annihilate during free propagation of such a combined beam. Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density distribution in a combined beam is established. We show that, in spite of any variation in the number of vortices in a combined beam, the total angular momentum is constant during the propagation. [S1050-2947(97)09910-1].
Resumo:
The metallic voice is usually confused with ring or nasality by singers and nontrained listeners. who are not used to perceptual vocal analysis. They believe a metallic voice results from a rise in fundamental frequency. A diagnostic error in this aspect may lead to lowering pitch, an incorrect procedure that Could Cause vocal overload and fatigue. The purpose of this article is to Study the quality of metallic voice considering the correlation between information of the physiological and acoustic plans, based on a perceptive consensual assumption. Fiberscopic video pharyngolaryngoscopy was performed on 21 professional singers while speaking vowel [e]-in normal and metallic modes to observe muscular movements and structural changes of the velopharynx, pharynx, and larynx. Vocal samples captured simultaneously to the fiberscopic examination were acoustically analyzed. Frequency and amplitude of the first four formants (F(1), F(2), F(3), and F(4)) were extracted by means of linear predictor coefficients (LPC) Spectrum and were statistically analyzed. Vocal tract adjustments such as velar lowering, pharyngeal wall narrowing, laryngeal rise, aryepiglottic, and lateral laryngeal constrictions were frequently found: there were no significant changes in frequency and amplitude of F(1) in the metallic voiced there were significant increases in amplitudes of F(2), F(3), and F(4) and in frequency for F, metallic Voice perceived as louder was correlated to an increase ill amplitude of F(3) and F(4). Physiological adjustments of velopharynx, pharynx, and larynx are combined in characterizing the metallic voice and can be acoustically related to changes in formant pattern.
Resumo:
Objective. The purpose of this study was to estimate the Down syndrome detection and false-positive rates for second-trimester sonographic prenasal thickness (PT) measurement alone and in combination with other markers. Methods. Multivariate log Gaussian modeling was performed using numerical integration. Parameters for the PT distribution, in multiples of the normal gestation-specific median (MoM), were derived from 105 Down syndrome and 1385 unaffected pregnancies scanned at 14 to 27 weeks. The data included a new series of 25 cases and 535 controls combined with 4 previously published series. The means were estimated by the median and the SDs by the 10th to 90th range divided by 2.563. Parameters for other markers were obtained from the literature. Results. A log Gaussian model fitted the distribution of PT values well in Down syndrome and unaffected pregnancies. The distribution parameters were as follows: Down syndrome, mean, 1.334 MoM; log(10) SD, 0.0772; unaffected pregnancies, 0.995 and 0.0752, respectively. The model-predicted detection rates for 1%, 3%, and 5% false-positive rates for PT alone were 35%, 51%, and 60%, respectively. The addition of PT to a 4 serum marker protocol increased detection by 14% to 18% compared with serum alone. The simultaneous sonographic measurement of PT and nasal bone length increased detection by 19% to 26%, and with a third sonographic marker, nuchal skin fold, performance was comparable with first-trimester protocols. Conclusions. Second-trimester screening with sonographic PT and serum markers is predicted to have a high detection rate, and further sonographic markers could perform comparably with first-trimester screening protocols.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus ( Sigmodontinae), Dobrava virus ( Murinae), Puumala virus ( Arvicolinae), and Tula virus ( Arvicolinae). Our results reveal that hantaviruses exhibit shortterm substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.
Resumo:
Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.