990 resultados para Galaxies : Photometry
Resumo:
We analyze a set of 760 475 observations of 333 026 unique main-belt objects obtained by the Pan-STARRS1(PS1) survey telescope between 2012 May 20 and 2013 November 9, a period during which PS1 discoveredtwo main-belt comets, P/2012 T1 (PANSTARRS) and P/2013 R3 (Catalina-PANSTARRS). PS1 cometdetection procedures currently consist of the comparison of the point spread functions (PSFs) of movingobjects to those of reference stars, and the flagging of objects that show anomalously large radial PSFwidths for human evaluation and possible observational follow-up. Based on the number of missed discoveryopportunities among comets discovered by other observers, we estimate an upper limit comet discoveryefficiency rate of 70% for PS1. Additional analyses that could improve comet discovery yields infuture surveys include linear PSF analysis, modeling of trailed stellar PSFs for comparison to trailed movingobject PSFs, searches for azimuthally localized activity, comparison of point-source-optimized photometryto extended-source-optimized photometry, searches for photometric excesses in objects withknown absolute magnitudes, and crowd-sourcing. Analysis of the discovery statistics of the PS1 surveyindicates an expected fraction of 59 MBCs per 106 outer main-belt asteroids (corresponding to a totalexpected population of 140 MBCs among the outer main-belt asteroid population with absolute magnitudesof 12 < HV < 19:5), and a 95% confidence upper limit of 96 MBCs per 106 outer main-belt asteroids(corresponding to a total of 230 MBCs), assuming a detection efficiency of 50%. We note howeverthat significantly more sensitive future surveys (particularly those utilizing larger aperture telescopes)could detect many more MBCs than estimated here. Examination of the orbital element distribution ofall known MBCs reveals an excess of high eccentricities (0:1 < e < 0:3) relative to the background asteroidpopulation. Theoretical calculations show that, given these eccentricities, the sublimation rate for atypical MBC is orders of magnitude larger at perihelion than at aphelion, providing a plausible physicalexplanation for the observed behavior of MBCs peaking in observed activity strength near perihelion.These results indicate that the overall rate of mantle growth should be slow, consistent with observationalevidence that MBC activity can be sustained over multiple orbit passages.
Resumo:
Absolute magnitude (H) of an asteroid is a fundamental parameter describing the size and the apparent brightness of the body. Because of its surface shape, properties and changing illumination, the brightness changes with the geometry and is described by the phase function governed by the slope parameter (G). Although many years have been spent on detailed observations of individual asteroids to provide H and G, vast majority of minor planets have H based on assumed G and due to the input photometry from multiple sources the errors of these values are unknown. We compute H of ~ 180 000 and G of few thousands asteroids observed with the Pan-STARRS PS1 telescope in well defined photometric systems. The mean photometric error is 0.04 mag. Because on average there are only 7 detections per asteroid in our sample, we employed a Monte Carlo (MC) technique to generate clones simulating all possible rotation periods, amplitudes and colors of detected asteroids. Known asteroid colors were taken from the SDSS database. We used debiased spin and amplitude distributions dependent on size, spectral class distributions of asteroids dependent on semi-major axis and starting values of G from previous works. H and G (G12 respectively) were derived by phase functions by Bowell et al. (1989) and Muinonen et al. (2010). We confirmed that there is a positive systematic offset between H based on PS1 asteroids and Minor Planet Center database up to -0.3 mag peaking at 14. Similar offset was first mentioned in the analysis of SDSS asteroids and was believed to be solved by weighting and normalizing magnitudes by observatory codes. MC shows that there is only a negligible difference between Bowell's and Muinonen's solution of H. However, Muinonen's phase function provides smaller errors on H. We also derived G and G12 for thousands of asteroids. For known spectral classes, slope parameters agree with the previous work in general, however, the standard deviation of G in our sample is twice as larger, most likely due to sparse phase curve sampling. In the near future we plan to complete the H and G determination for all PS1 asteroids (500,000) and publish H and G values online. This work was supported by NASA grant No. NNX12AR65G.
Resumo:
We present the latest analysis and results from SEPPCoN (Survey of Ensemble Physical Properties of Cometary Nuclei). This on-going survey involves studying 100 JFCs - about 25% of the known population - at both mid-infrared and visible wave-lengths to constrain the distributions of sizes, shapes, spins, and albedos of this population. Having earlier reported results from measuring thermal emissions of our sample nuclei [1,2,3,4], we report here progress on the visible-wavelength observations that we have obtained at many ground-based facilities in Chile, Spain, and the United States. To date we have attempted observations of 91% of our sample of 100 JFCs, and at least 64 of those were successfully detected. In most cases the comets were at heliocentric distances between 3.0 and 6.5 AU so as to decrease the odds of a comet having a coma. Of the 64 detected comets, 48 were apparently bare, having no extended emission. Our datasets are further augmented by archival data and photometry from the NEAT program [5]. An important goal of SEPPCoN is to accumulate a large comprehensive set of high quality physical data on cometary nuclei in order to make accurate statistical comparisons with other minor-body populations such as Trojans, Centaurs, and Kuiper-belt objects. Information on the size, shape, spin-rate, albedo and color distributions is critical for understanding their origins and evolutionary processes affecting them.
Resumo:
Context: Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims: Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods: We present mid-infrared photometry in two filters (16 and 22 μm) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM). We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results: We obtain a well constrained beaming parameter (η = 1.39±0.26) and obtain a diameter and geometric albedo of D = 3.46±0.32 km, and pV = 0.059±0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995, P&SS, 43, 733), Kraemer et al. (2005, AJ, 130, 2363) and Reach et al. (2007, Icarus, 191, 298). Conclusions: The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm-2s-0.5 K-1 when it is at r = 1 AU, which is slightly over the limit of 30 Jm-2 s-0.5 K-1 derived by Groussin et al. (2009, Icarus, 199, 568) for the thermal inertia of the nucleus of comet 22P/Kopff.
Resumo:
We present new results from SEPPCoN, a Survey of Ensemble Physical Properties of Cometary Nuclei. This project is currently surveying 100 Jupiter-family comets (JFCs) to measure the mid-infrared thermal emission and visible reflected sunlight of the nuclei. The scientific goal is to determine the distributions of radius, geometric albedo, thermal inertia, axial ratio, and color among the JFC nuclei. In the past we have presented results from the completed mid-IR observations of our sample [1]; here we present preliminary results from ongoing, broadband visible-wavelength observations of nuclei obtained from a variety of ground-based facilities (Mauna Kea, Cerro Pachon, La Silla, La Palma, Apache Point, Table Mtn., and Palomar Mtn.), including contributions from the Near Earth Asteroid Telescope project (NEAT) archive. The nuclei were observed at high heliocentric distance (usually over 4 AU) and so many comets show either no or little contamination from dust coma. While several nuclei have been observed as snapshots, we have multiepoch photometry for many of our targets. With our datasets we are building a large database of photometry, and such a database is essential to the derivation of albedo and shape of a large number of nuclei, and to the understanding of biases in the survey. Support for this work was provided by NSF and the NASA Planetary Astronomy program. Reference: [1] Fernandez, Y.R., et al. 2007, BAAS 39, 827.
Resumo:
We present the study of absolute magnitude (H) and slope parameter (G) of 170,000 asteroids observed by the Pan-STARRS1 telescope during the period of 15 months within its 3-year all-sky survey mission. The exquisite photometry with photometric errors below 0.04 mag and well-defined filter and photometric system allowed to derive H and G with statistical and systematic errors. Our new approach lies in the Monte Carlo technique simulating rotation periods, amplitudes, and colors, and deriving most-likely H, G and their systematic errors. Comparison of H_M by Muinonen's phase function (Muinonen et al., 2010) with the Minor Planet Center database revealed a negative offset of 0.22±0.29 meaning that Pan-STARRS1 asteroids are fainter. We showed that the absolute magnitude derived by Muinonen's function is systematically larger on average by 0.14±0.29 and by 0.30±0.16 when assuming fixed slope parameter (G=0.15, G_{12}=0.53) than Bowell's absolute magnitude (Bowell et al., 1989). We also derived slope parameters of asteroids of known spectral types and showed a good agreement with the previous studies within the derived uncertainties. However, our systematic errors on G and G_{12} are significantly larger than in previous work, which is caused by poor temporal and phase coverage of vast majority of the detected asteroids. This disadvantage will vanish when full survey data will be available and ongoing extended and enhanced mission will provide new data.
Resumo:
We present optical spectra of pre-main-sequence (PMS) candidates around the Ha region taken with the Southern African Large Telescope in the low metallicity (Z) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of Z similar to 1/5 Z(circle dot). It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, (M) over dot(acc), are a function of Z. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-Z star-forming region. Our data set was enlarged with literature data of H alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 and 2 M-circle dot and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of Two Micron All Sky Survey and Spitzer infrared photometry. We find (M) over dot(acc) in the 1-2 M-circle dot interval to depend quasi-quadratically on stellarmass, with (M) over dot(acc) proportional to M-*(2.4 +/- 0.35), and inversely with stellar age, with (M) over dot(acc) proportional to t(*)(-0.7 +/- 0.4). Furthermore, we compare our spectroscopic (M) over dot(acc) measurements with solar Z Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in (M) over dot(acc) with Z. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that (M) over dot(acc) may be controlled by factors other than Z(*), M-*, and age.
Resumo:
The masses and the evolutionary states of the progenitors of core-collapse supernovae are not well constrained by direct observations. Stellar evolution theory generally predicts that massive stars with initial masses less than about 30M_sol should undergo core-collapse when they are cool M-type supergiants. However the only two detections of a SN progenitor before explosion are SN1987A and SN1993J, and neither of these was an M-type supergiant. Attempting to identify the progenitors of supernovae is a difficult task, as precisely predicting the time of explosion of a massive star is impossible for obvious reasons. There are several different types of supernovae which have different spectral and photometric evolution, and how exactly these are related to the evolutionary states of the progenitor stars is not currently known. I will describe a novel project which may allow the direct identification of core-collapse supernovae progenitors on pre-explosion images of resolved, nearby galaxies. This project is now possible with the excellent image archives maintained by several facilities and will be enhanced by the new initiatives to create Virtual Observatories, the earliest of which ASTROVIRTEL is already producing results.
Resumo:
Over the last 15 years, the supernova community has endeavoured to directly identify progenitor stars for core-collapse supernovae discovered in nearby galaxies. These precursors are often visible as resolved stars in high-resolution images from space-and ground-based telescopes. The discovery rate of progenitor stars is limited by the local supernova rate and the availability and depth of archive images of galaxies, with 18 detections of precursor objects and 27 upper limits. This review compiles these results (from 1999 to 2013) in a distance-limited sample and discusses the implications of the findings. The vast majority of the detections of progenitor stars are of type II-P, II-L, or IIb with one type Ib progenitor system detected and many more upper limits for progenitors of Ibc supernovae (14 in all). The data for these 45 supernovae progenitors illustrate a remarkable deficit of high-luminosity stars above an apparent limit of log L/L-circle dot similar or equal to 5.1 dex. For a typical Salpeter initial mass function, one would expect to have found 13 high-luminosity and high-mass progenitors by now. There is, possibly, only one object in this time-and volume-limited sample that is unambiguously high-mass (the progenitor of SN2009ip) although the nature of that supernovae is still debated. The possible biases due to the influence of circumstellar dust, the luminosity analysis, and sample selection methods are reviewed. It does not appear likely that these can explain the missing high-mass progenitor stars. This review concludes that the community's work to date shows that the observed populations of supernovae in the local Universe are not, on the whole, produced by high-mass (M greater than or similar to 18 M-circle dot) stars. Theoretical explosions of model stars also predict that black hole formation and failed supernovae tend to occur above an initial mass of M similar or equal to 18 M-circle dot. The models also suggest there is no simple single mass division for neutron star or black-hole formation and that there are islands of explodability for stars in the 8-120 M-circle dot range. The observational constraints are quite consistent with the bulk of stars above M similar or equal to 18 M-circle dot collapsing to form black holes with no visible supernovae.
Resumo:
We present optical observations of the peculiar stripped-envelope supernovae (SNe) LSQ12btw and LSQ13ccw discovered by the La Silla-QUEST survey. LSQ12btw reaches an absolute peak magnitude of M-g = -19.3 +/- 0.2, and shows an asymmetric light curve. Stringent pre-discovery limits constrain its rise time to maximum light to less than 4 d, with a slower post-peak luminosity decline, similar to that experienced by the prototypical SN Ibn 2006jc. LSQ13ccw is somewhat different: while it also exhibits a very fast rise to maximum, it reaches a fainter absolute peak magnitude (M-g =-18.4 +/- 0.2), and experiences an extremely rapid post-peak decline similar to that observed in the peculiar SN Ib 2002bj. A stringent pre-discovery limit and an early marginal detection of LSQ13ccw allow us to determine the explosion time with an uncertainty of +/- 1 d. The spectra of LSQ12btw show the typical narrow He I emission lines characterizing Type Ibn SNe, suggesting that the SN ejecta are interacting with He-rich circumstellar material. The He I lines in the spectra of LSQ13ccw exhibit weak narrow emissions superposed on broad components. An unresolved H alpha line is also detected, suggesting a tentative Type Ibn/IIn classification. As for other SNe Ibn, we argue that LSQ12btw and LSQ13ccw likely result from the explosions of Wolf-Rayet stars that experienced instability phases prior to core collapse. We inspect the host galaxies of SNe Ibn, and we show that all of them but one are hosted in spiral galaxies, likely in environments spanning a wide metallicity range.
Resumo:
The Fe unresolved transition arrays (UTAs) produce prominent features in the 15-17 Å wavelength range in the spectra of active galactic nuclei (AGNs). Here, we present new calculations of the energies and oscillator strengths of inner-shell lines from Fe XIV, Fe XV, and Fe XVI. These are crucial ions since they are dominant at inflection points in the gas thermal stability curve, and UTA excitation followed by autoionization is an important ionization mechanism for these species. We incorporate these, and data reported in previous papers, into the plasma simulation code Cloudy. This updated physics is subsequently employed to reconsider the thermally stable phases in absorbing media in AGNs. We show how the absorption profile of the Fe XIV UTA depends on density, due to the changing populations of levels within the ground configuration. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes, and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching and measure physical and host-normalized offsets as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ([Sigma(SFR)] similar or equal to 0.1M(circle dot) yr(-1) kpc(-1)), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs; which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.
Resumo:
We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands gP1, rP1, iP1, and zP1. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.
Resumo:
We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M-1 similar to -17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths
Resumo:
We present the results of a Monte Carlo technique to calculate the absolute magnitudes (H) and slope parameters (G) of about 240,000 asteroids observed by the Pan-STARRS1 telescope during the first 15 months of its 3-year all-sky survey mission. The system's exquisite photometry with photometric errors asteroids rotation period, amplitude and color to derive the most-likely H and G, but its major advantage is in estimating realistic statistical+systematic uncertainties and errors on each parameter. The method was confirmed by comparison with the well-established and accurate results for about 500 asteroids provided by Pravec et al. (2012) and then applied to determining H and G for the Pan-STARRS1 asteroids using both the Muinonen et al. (2010) and Bowell et al. (1989) phase functions. Our results confirm the bias in MPC photometry discovered by ( Jurić et al., 2002).