881 resultados para GOLD ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the implementation of Ghana's national Structural Adjustment Programme (SAP), policies associated with the programme have been criticized for perpetuating poverty within the country's subsistence economy. This article brings new evidence to bear on the contention that the SAP has both fuelled the uncontrolled growth of informal, poverty-driven artisanal gold mining and further marginalized its impoverished participants. Throughout the adjustment period, it has been a central goal of the government to promote the expansion of large-scale gold mining through foreign investment. Confronted with the challenge of resuscitating a deteriorating gold mining industry, the government introduced a number of tax breaks and policies in an effort to create an attractive investment climate for foreign multinational mining companies. The rapid rise in exploration and excavation activities that has since taken place has displaced thousands of previously-undisturbed subsistence artisanal gold miners. This, along with a laissez faire land concession allocation procedure, has exacerbated conflicts between mining parties. Despite legalizing small-scale mining in 1989, the Ghanaian government continues to implement procedurally complex and bureaucratically unwieldy regulations and policies for artisanal operators which have the effect of favouring the interests of established large-scale miners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper contributes to the debate on child labor in small-scale mining communities, focusing specifically on the situation in sub-Saharan Africa. It argues that the child labor now widespread in many of the region’s small-scale mining communities is a product of a combination of cultural issues, household-level poverty and rural livelihood diversification. Experiences from Komana West, a subsistence gold panning area in Southern Mali, are drawn upon to make this case. The findings suggest that the sector’s child labor “problem” is far more nuanced than international organizations and policymakers have diagnosed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary mixed-metal variants of the one-dimensional MCN compounds (M = Cu, Ag, and Au) have been prepared and characterized using powder X-ray diffraction, vibrational spectroscopy, and total neutron diffraction. A solid solution with the AgCN structure exists in the (CuxAg1–x)CN system over the range (0 ≤ x ≤ 1). Line phases with compositions (Cu1/2Au1/2)CN, (Cu7/12Au5/12)CN, (Cu2/3Au1/3)CN, and (Ag1/2Au1/2)CN, all of which have the AuCN structure, are found in the gold-containing systems. Infrared and Raman spectroscopies show that complete ordering of the type [M–C≡N–M′–N≡C−]n occurs only in (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN. The sense of the cyanide bonding was determined by total neutron diffraction to be [Ag–NC–Au–CN−]n in (Ag1/2Au1/2)CN and [Cu–NC–Au–CN−]n in (Cu1/2Au1/2)CN. In contrast, in (Cu0.50Ag0.50)CN, metal ordering is incomplete, and strict alternation of metals does not occur. However, there is a distinct preference (85%) for the N end of the cyanide ligand to be bonded to copper and for Ag–CN–Cu links to predominate. Contrary to expectation, aurophilic bonding does not appear to be the controlling factor which leads to (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN adopting the AuCN structure. The diffuse reflectance, photoluminescence, and 1-D negative thermal expansion (NTE) behaviors of all three systems are reported and compared with those of the parent cyanide compounds. The photophysical properties are strongly influenced both by the composition of the individual chains and by how such chains pack together. The NTE behavior is also controlled by structure type: the gold-containing mixed-metal cyanides with the AuCN structure show the smallest contraction along the chain length on heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article discusses the character of mineral resource governance at the margins of the state in Tanzania and the way artisanal gold miners are incorporated into mineral sector transformation. The landscape of mineral resource exploitation has changed dramatically over the past 20 years: processes of economic liberalisation have heralded massive foreign investment in large-scale gold mining, while also stimulating artisanal activities. Against this background, the article shows how artisanal gold miners are affected by contradictory processes: some have become integrated with state institutions and legal processes, while others, the large majority, are either further excluded or incorporated in ways that exacerbate insecurity and exploitation, underpinned by socio-economic inequalities. These processes are compounded by the actions of large-scale and medium-scale gold mining companies and by poor local governance. It is open to debate whether this will bring improved integration and welfare for artisanal mining communities or new forms of exclusion, although evidence suggests the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrenefunctionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined p–p stacked complexes between p-electron rich pyrenyl residues and p-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6 : 1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2- trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of −58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s−1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use density functional theory calculations with Hubbard corrections (DFT+U) to investigate electronic aspects of the interaction between ceria surfaces and gold atoms. Our results show that Au adatoms at the (111) surface of ceria can adopt Au0, Au+ or Au� electronic configurations depending on the adsorption site. The strongest adsorption sites are on top of the surface oxygen and in a bridge position between two surface oxygen atoms, and in both cases charge transfer from the gold atom to one of the Ce cations at the surface is involved. Adsorption at other sites, including the hollow sites of the surface, and an O–Ce bridging site, is weaker and does not involve charge transfer. Adsorption at an oxygen vacancy site is very strong and involves the formation of an Au� anion. We argue that the ability of gold atoms to stabilise oxygen vacancies at the ceria surface by moving into the vacancy site and attracting the excess electrons of the defect could be responsible for the enhanced reducibility of ceria surfaces in the presence of gold. Finally, we rationalise the differences in charge transfer behaviour from site to site in terms of the electrostatic potential at the surface and the coordination of the species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphine-stabilised gold cluster [Au6(Ph2P-o-tolyl)6](NO3)2 is converted into an active nanocatalyst for the oxidation of benzyl alcohol through low-temperature peroxide-assisted removal of the phosphines, avoiding the high-temperature calcination process. The process was monitored using in-situ X-ray absorption spectroscopy, which revealed that after a certain period of the reaction with tertiary butyl hydrogen peroxide, the phosphine ligands are removed to form nanoparticles of gold which matches with the induction period seen in the catalytic reaction. Density functional theory calculations show that the energies required to remove the ligands from the [Au6Ln]2+ increase significantly with successive removal steps, suggesting that the process does not occur at once but sequentially. The calculations also reveal that ligand removal is accompanied by dramatic re-arrangements in the topology of the cluster core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the financial effects of additions to and deletions from the most well-known social stock index: the MSCI KLD 400. Our study makes use of the unique setting that index reconstitution provides and allows us to bypass possible issues of endogeneity that commonly plague empirical studies of the link between corporate social and financial performance. By examining not only short-term returns but also trading activity, earnings per share, and long-term performance of stocks that are involved in these events, we bring forward evidence of a ‘social index effect’ where unethical transgressions are penalized more heavily than responsibility is rewarded. We find that the addition of a stock to the index does not lead to material changes in its market price, whereas deletions are accompanied by negative cumulative abnormal returns. Trading volumes for deleted stocks are significantly increased on the event date, while the operational performances of the respective firms deteriorate after their deletion from the social index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review discusses the stabilization of gold nanoparticles (AuNPs) by nonionic, anionic, cationic and amphoteric polymers. The protocols used for synthesis of AuNPs in aqueous and organic solvents are described. Size, shape and morphology of AuNPs are characterized by various physicochemical methods. Application aspects of polymer-protected AuNPs in catalysis are outlined.