455 resultados para GLAUCOMA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The aim of this communication is to report enophthalmos as a possible new adverse effect of topical bimatoprost treatment. PATIENTS AND METHODS: A retrospective case series of five glaucoma patients under long-term topical bimatoprost treatment was evaluated. Documentation with photo and Hertel exophthalmometry was reviewed. RESULTS: In all five patients a deep lid sulcus, reduced infraocular fat pads and enophthalmos-suspicious Hertel values were found (mean 11.9 mm; SD 2.4). Other aetiologies for enophthalmos were excluded anamnestically and by clinical examination. CONCLUSION: Bimatoprost may lead to an alteration of the eyelid with deepening of the lid sulcus and may also be responsible for an iatrogenic orbital fat atrophy. A possible mechanism of action might be the induction of apoptosis of orbital fibroblasts with a remodelling of the extracellular matrix. Prospective studies are necessary to confirm this cross-sectional observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vitamin E compound alpha-tocopherol inhibits fibroblast growth in vitro. To evaluate its potential benefit in preventing failure of glaucoma filtration surgery, we prospectively investigated the outcome of filtering surgery with postoperative dietary alpha-tocopherol supplementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The relationship between uveitis anterior in childhood and juvenile chronic arthritis (JCA, respectively JRA) has been known since 1950. In a review, the clinical picture of uveitis anterior, its prevalence, pathogenesis, prognosis and current therapy of ocular complications are presented. In addition, we will report our results of a clinical study. PATIENTS AND METHODS: In a cross-sectional study, 64 patients with juvenile chronic arthritis (JCA) had an ophthalmological screening for eye complications either from the disease itself or from the treatment. RESULTS: In 16% of the patients, an iridocyclitis was found, in one case acute, in 9 cases chronic. The cases of chronic uveitis anterior showed in 43% a combination with the classic risk factors (ANA-positive, oligoarticular, female). At the beginning of uveitis, the patients had a mean age of 81 months, at the beginning of JCA disease a mean age of 37 months. Four of 10 patients (= 40%) had eye complications from uveitis (cataract, posterior synechiae, glaucoma). Complications from therapy were found in 27%, mostly cataract as a complication of systemic and topical steroid treatment. Eighteen % had a visual acuity of 0.4 or less. CONCLUSIONS: Because of the often asymptomatic progression of chronic uveitis anterior, the risk of severe undetected eye complications is high. Therefore, an intensive interdisciplinary cooperation between rheumatologists, pediatrics and ophthalmologists is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To investigate retrograde axonal degeneration for its potential to cause microcystic macular edema (MME), a maculopathy that has been previously described in patients with demyelinating disease. To identify risk factors for MME and to expand the anatomic knowledge on MME. DESIGN Retrospective case series. PARTICIPANTS We included 117 consecutive patients and 180 eyes with confirmed optic neuropathy of variable etiology. Patients with glaucoma were excluded. METHODS We determined age, sex, visual acuity, etiology of optic neuropathy, and the temporal and spatial characteristics of MME. Eyes with MME were compared with eyes with optic neuropathy alone and to healthy fellow eyes. With retinal layer segmentation we quantitatively measured the intraretinal anatomy. MAIN OUTCOME MEASURES Demographic data, distribution of MME in the retina, and thickness of retinal layers were analyzed. RESULTS We found MME in 16 eyes (8.8%) from 9 patients, none of whom had multiple sclerosis or neuromyelitis optica. The MME was restricted to the inner nuclear layer (INL) and had a characteristic perifoveal circular distribution. Compared with healthy controls, MME was associated with significant thinning of the ganglion cell layer and nerve fiber layer, as well as a thickening of the INL and the deeper retinal layers. Youth is a significant risk factor for MME. CONCLUSIONS Microcystic macular edema is not specific for demyelinating disease. It is a sign of optic neuropathy irrespective of its etiology. The distinctive intraretinal anatomy suggests that MME is caused by retrograde degeneration of the inner retinal layers, resulting in impaired fluid resorption in the macula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several congenital syndromes associated with anterior segment (AS) anomalies can lead to impaired vision and glaucoma, such as nail-patella syndrome (NPS), caused by mutations in the LIM homeodomain transcription factor LMX1B and Axenfeld-Rieger's syndrome (ARS), caused by mutations in the bicoid-related homeodomain transcription factor PITX2. Targeted mutations in lmx1b and pitx2 and RNA in situ analysis reveal that both genes are required for AS development and are co-expressed within the periocular mesenchyme, suggesting they participate in a shared genetic pathway. Lmx1b homozygous mutants display iris and corneal stroma hypoplasia, and defects in ciliary body formation. In contrast, pitx2 homozygous mutants exhibit a more severe phenotype: the AS chamber, corneal endothelium, and extraocular muscles (EOM) fail to develop. The absence of EOM in pitx2 mutants suggests pitx2 acts upstream of lmx1b, or that other lmx1b family members, such as lmx1a, can compensate for lmx1b function. Lmxla/lmx1b double homozygous mutants have a reduced capacity to generate EOM, implying that lmx1 gene products have a redundant function in EOM development and that lmx1 family members may act downstream of pitx2. However, analysis of pitx2 expression in the AS tissues of lmx1b mutants and reciprocal studies of lmx1b expression in pitx2 mutants indicate that these genes do not function in a simple linear pathway. Instead, lmx1b and pitx2 may regulate a shared set of downstream targets or both genes may work in parallel transcribing unique targets required for a common biological process. Ultrastructural analysis of lmx1b and pitx2 mutant corneas indicates that collagen fibrillogenesis is perturbed, revealing a common role for both genes in the deposition of extracellular matrix. Furthermore, lmx1b/pitx2 double heterozygotes develop corneal opacities not observed in single heterozygotes demonstrating that lmx1b and pitx2 genetically interact. Data suggests that defects in the basement membrane of the corneal endothelium underlie the opacities observed in double heterozygotes. Additionally, double heterozygotes develop anterior synechias that occlude the trabecular meshwork, potentially blocking aqueous humor drainage. These data suggest that lmx1b and pitx2 are responsible for ECM deposition in multiple cell types and imply that such defects may contribute to the glaucomas observed in NPS and ARS patients. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most studies employing experimental models of unilateral glaucoma have used the normotensive contralateral eye as the normal control. However, some studies have recently reported the activation of the retinal macroglia and microglia in the uninjured eye, suggesting that the eye contralateral to experimental glaucoma should not be used as a control. This review analyzes the studies describing the contralateral findings and discusses some of the routes through which the signals can reach the contralateral eye to initiate the glial reactivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La flora bacteriana conjuntival desempeña un papel muy relevante en la patogenia de la endoftalmitis postoperatoria. Esta complicación, aunque es infrecuente, tiene una gran importancia dadas sus graves consecuencias sobre la función visual. El conocimiento de las características de la población bacteriana puede permitir establecer tanto valoraciones de riesgo individualizado como terapias profilácticas adaptadas al perfil específico de cada caso. En la situación particular del ojo con glaucoma este hecho adquiere una significación especial por varios factores, a menudo coexistentes: la alteración del complejo película lagrimal-superficie ocular, la habitual necesidad de instilación tópica de fármacos hipotensores de manera crónica, la posible existencia de una conjuntiva alterada por procedimientos quirúrgicos previos incluida la existencia de una ampolla de filtración y, finalmente, la grave repercusión de una contaminación bacteriana sobre un ojo operado de glaucoma. La alteración crónica de la superficie ocular es frecuente en pacientes con glaucoma. La instilación repetida y mantenida de colirios hipotensores, cuyos principios activos y conservantes pueden alterar la película lagrimal y dar lugar a modificaciones histológicas de la conjuntiva, puede reducir la capacidad de defensa del ojo frente a la agresión bacteriana...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine whether systemic fungal infection could cause activation of retinal microglia and therefore could be potentially harmful for patients with retinal degenerative diseases. Methods: Activation of retinal microglia was measured in a model of sublethal invasive candidiasis in C57BL/6J mice by (i) confocal immunofluorescence and (ii) flow cytometry analysis, using anti-CD11b, anti-Iba1, anti-MHCII and anti-CD45 antibodies. Results: Systemic fungal infection causes activation of retinal microglia, with phenotypic changes in morphology, surface markers expression, and microglial re-location in retinal layers. Conclusions: As an excessive or prolonged microglial activation may lead to chronic inflammation with severe pathological side effects, causing or worsening the course of retinal dystrophies, a systemic infection may represent a risk factor to be considered in patients with ocular neurodegenerative diseases, such as diabetic retinopathy, glaucoma, age-related macular degeneration or retinitis pigmentosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Implantation of phakic intraocular lenses (pIOLs) is a reversible refractive procedure, preserving the patient’s accommodative function with minimal induction of higher order aberrations compared with corneal photoablative procedures. Despite this, as an intraocular procedure, it has potential risks such as cataracts, chronic uveitis, pupil ovalization, corneal endothelial cell loss, pigmentary dispersion syndrome, pupillary block glaucoma, astigmatism, or endophthalmitis. Currently, only two models of posterior chamber pIOLs are commercially available, the implantable collammer lens (STAAR Surgical Co.) and the phakic refractive lens (PRL; Zeiss Meditec). The number of published reports on the latter is very low, and some concerns still remain about its long-term safety. The present article reviews the published literature on the outcomes after PRL implantation in order to provide a general overview and evaluate its real potential as a surgical refractive option.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods: Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results: A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions: After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. The DBA/2J mouse line develops essential iris atrophy, pigment dispersion, and glaucomatous age-related changes, including an increase of IOP, optic nerve atrophy, and retinal ganglion cell (RGC) death. The aim of this study was to evaluate possible morphological changes in the outer retina of the DBA/2J mouse concomitant with disease progression and aging, based on the reduction of both the a- and b-waves and photopic flicker ERGs in this mouse line. Methods. Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8, and 16 months of age using photoreceptor, horizontal, and bipolar cell markers. Sixteen-month-old C57BL/6 mice retinas were used as controls. Results. The DBA/2J mice had outer retinal degeneration at all ages, with the most severe degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor cells and the thickness of the OPL were reduced. In addition, there was a loss of horizontal and ON-bipolar cell processes. At 8 months of age, RGC degeneration occurred in patches, and in the outer retina overlying these patches, cone morphology was impaired with a reduction in size as well as loss of outer segments and growth of horizontal and bipolar cell processes into the outer nuclear layer. At 16 months of age, connectivity between photoreceptors and horizontal and bipolar cell processes overlying these patches was lost. Conclusions. Retinal degeneration in DBA/2J mice includes photoreceptor death, loss of bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.