836 resultados para GIBBS FORMALISM
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
The hydration kinetics of five barley cultivars was studied at six different temperatures ranging from 10 to 35 ºC for 32 hours applying the Peleg model. Response Surface was used to describe dynamic of the process and identify the hydration time for each cultivar. The activation energy (Ea), enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) were estimated from the adjusted parameters and Arrhenius equation. Temperature had significant effect on the hydration of the five cultivars. At low temperatures, the stabilization time for hydration was faster. Peleg constants K1 and K2 decreased with increasing temperature. The cultivar BRS BRAU showed the lowest value of initial absorption rate (R0 = 0.149 kg.h-1) at 10 ºC, while the cultivar BRS BOREMA had the highest value of R0 (0.367 kg.h-1 at 35 ºC). The equilibrium moisture content (Me) increased with increasing temperature. The cultivars BRS CAUE and BRS BRAU showed the lowest values of Ea, ΔH*, ΔS* showed negative values, and ΔG* increased with increasing temperature, confirming the effect of temperature on hydration.
Resumo:
Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians) according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC) under a wide range of moisture content (0.005-0.057 kg kg-1 d.b.) and water activity (0.02-0.756). Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.
Resumo:
The equilibrium moisture content for adsorption and desorption isotherms of mango skin was determined using the static gravimetric method at temperatures of 20, 26, 33, 38 and 44 oC in the 0.056 to 0.873 water activity range. Both sorption curves show a decrease in equilibrium moisture content as the temperature increasing. The hysteresis effect was observed at constant water activity. The Guggenheim, Anderson, and de Boer (GAB) model presented the best fitting accuracy among a group of models and was used to determine the thermodynamic properties of water sorption. Integral enthalpy and integral entropy areas showed inverted values for the adsorption and desorption isotherms over the wide range of water activity studied. These values confirm, in energetic terms, the difference between adsorption and desorption isotherms observed in the hysteresis phenomenon. Finally, the Gibbs free energy revealed that the sorption process was spontaneous for both sorption isotherms.
Resumo:
Kirjallisuusarvostelu
Resumo:
Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.
Resumo:
This paper examines the relation between intuition and concept in Kant in light of John McDowell's neo-Kantian position that intuitions are concept-laden.2 The focus is on Kant's twofold pronouncement that thoughts without content are empty and that intuitions without concepts are blind. I show that intuitions as singular representations are not instances of passive data intake but the result of synthetic unification of the given manifold of the senses by the power of the imagination under the guidance of the understanding. Against McDowell I argue that the amenability of intuitions to conceptual determination is not due some pre-existing, absolute conceptuality of the real but to the "work of the subject."3 On a more programmatic level, this paper seeks to demonstrate the limitations of a selective appropriation of Kant and the philosophical potential of a more comprehensive and thorough consideration of his work. Section 1 addresses the unique balance in Kant's philosophy between the work on particular problems and the orientation toward a systematic whole. Section 2 outlines McDowell's take on the Kantian distinction between intuition and concept in the context of the Kant readings by Sellars and Strawson. Section 3 exposes McDowell's relapse into the Myth of the Given. Section 4 proposes a reading of Kant's theoretical philosophy as an epistemology of metaphysical cognition. Section 5 details Kant's original account of sensible intuition in the Inaugural-Dissertation of 1770. Section 6 presents the transition from the manifold of the senses to the synthesis in the imagination and the unification through the categories in the Critique of pure reason (1781 and 1787). Section 7 addresses Kant's formalism in epistemology and metaphysics.
Resumo:
Classical aesthetics sees the experience of the beautiful as an anthropological necessity. But, in fact, the beautiful is rather the central category designating classical art, and one can question the relevance of this category considering contemporary art. The reference term most frequently used for contemporary art is interesting: works of art solicit the interests of my faculties (the cognitive-intellectual, the pragmatic community-oriented moral, the affective aesthetic faculties). It is interesting to notice that the categories of the beautiful and the ugly have an axiological-moral value. It looks as if the qualities of contemporary art works are judged according to the intensity of the impact on the interests of our faculties. It reveals important, in this respect, to distinguish the ugly from the sublime and the monstrous. Kants Third Critique is of some importance in defining these categories.
Resumo:
In this work, the magnetic field penetration depth for high-Tc cuprate superconductors is calculated using a recent Interlayer Pair Tunneling (ILPT) model proposed by Chakravarty, Sudb0, Anderson, and Strong [1] to explain high temperature superconductivity. This model involves a "hopping" of Cooper pairs between layers of the unit cell which acts to amplify the pairing mechanism within the planes themselves. Recent work has shown that this model can account reasonably well for the isotope effect and the dependence of Tc on nonmagnetic in-plane impurities [2] , as well as the Knight shift curves [3] and the presence of a magnetic peak in the neutron scattering intensity [4]. In the latter case, Yin et al. emphasize that the pair tunneling must be the dominant pairing mechanism in the high-Tc cuprates in order to capture the features found in experiments. The goal of this work is to determine whether or not the ILPT model can account for the experimental observations of the magnetic field penetration depth in YBa2Cu307_a7. Calculations are performed in the weak and strong coupling limits, and the efi"ects of both small and large strengths of interlayer pair tunneling are investigated. Furthermore, as a follow up to the penetration depth calculations, both the neutron scattering intensity and the Knight shift are calculated within the ILPT formalism. The aim is to determine if the ILPT model can yield results consistent with experiments performed for these properties. The results for all three thermodynamic properties considered are not consistent with the notion that the interlayer pair tunneling must be the dominate pairing mechanism in these high-Tc cuprate superconductors. Instead, it is found that reasonable agreement with experiments is obtained for small strengths of pair tunneling, and that large pair tunneling yields results which do not resemble those of the experiments.
Resumo:
We study the ultrasonic attenuation in layered superconductors using the Green's function formalism. General expressions are derived analytically and then calculated numerically by taking the nearest and next-nearest interactions in a disordered layered superconductor with random hoppings. Our results show huge anisotropics of ultrasonic attenuation in the superconductors and the strong dependence of ultrasonic attenuation on the temperature and the direction of polarization of the sound wave.
Resumo:
Western law schools are suffering from an identity and moral crisis. Many of the legal profession's problems can be traced to the law school environment, where students are taught to reason and practice in ways that are often at odds with their own personalities and values and even with generally accepted psychologically healthy practices. The idealism, ethic of care, and personal moral compasses of many students become eroded and even lost in the present legal education system. Formalism, rationalism, elitism, and big business values have become paramount. In such a moment of historical crisis, there exists the opportunity to create a new legal education story. This paper is a conceptual study of both my own Canadian legal education and the general legal education experience. It examines core problems and critiques of the existing Western legal education organizational and pedagogical paradigm to which Canadian law schools adhere. New approaches with the potential to enrich, humanize, and heal the Canadian law school experience are explored. Ultimately, the paper proposes a legal education system that is more interdisciplinary, theoretically and practically integrated, emotionally intelligent, technologically connected, morally accountable, spiritual, and humane. Specific pedagogical and curricular strategies are suggested, and recommendations for the future are offered. The dehumanizing aspects of the law school experience in Canada have rarely been studied. It is hoped that this thesis will fill a gap in the research and provide some insight into an issue that is of both academic and public importance, since the well-being of law students and lawyers affects the interests of their clients, the general public, and the integrity and future of the entire legal system.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
Four problems of physical interest have been solved in this thesis using the path integral formalism. Using the trigonometric expansion method of Burton and de Borde (1955), we found the kernel for two interacting one dimensional oscillators• The result is the same as one would obtain using a normal coordinate transformation, We next introduced the method of Papadopolous (1969), which is a systematic perturbation type method specifically geared to finding the partition function Z, or equivalently, the Helmholtz free energy F, of a system of interacting oscillators. We applied this method to the next three problems considered• First, by summing the perturbation expansion, we found F for a system of N interacting Einstein oscillators^ The result obtained is the same as the usual result obtained by Shukla and Muller (1972) • Next, we found F to 0(Xi)f where A is the usual Tan Hove ordering parameter* The results obtained are the same as those of Shukla and Oowley (1971), who have used a diagrammatic procedure, and did the necessary sums in Fourier space* We performed the work in temperature space• Finally, slightly modifying the method of Papadopolous, we found the finite temperature expressions for the Debyecaller factor in Bravais lattices, to 0(AZ) and u(/K/ j,where K is the scattering vector* The high temperature limit of the expressions obtained here, are in complete agreement with the classical results of Maradudin and Flinn (1963) .
Resumo:
This thesis takes some steps in examining the child protection system from a position that is rarely discussed. Specifically, I explore how Foucault's concept of disciplinary power can be used to demonstrate how power operates within the client/worker relationship. This relationship is shown to be quite complex with power flowing bidirectionally, rather than hierarchically. Instead of viewing power imbalances as a function of state control, I show how the client/worker relationship is constituted by the worker, the client, the organization and the social body. A postmodern auto ethnography is used to document my journey as I expose the disciplinary practices and instruments that I was subject to and used with my clients. 2 Given that the child protection system is constantly shifting and changing in order to improve its ability to safeguard children a greater emphasis is required to examine how workers operate within this complex, overwhelming and multi-dimensional world. This thesis has shown that by engaging in a reflexive examination of my position of power different approaches to making intervention beneficial to all involved become available. This is important if child protection work aims to work with clients rather than on clients.
Resumo:
In 1973, Kathleen Pearson offered a pivotal first step into understanding deception in competitive sport and its many intricacies. However, the analysis falls short of truly deciphering this widespread phenomenon. By creating a taxonomy based on Torres (2000) understanding of various types of skills in an athletic contest, a wider array of deceptive practices are encompassed. Once the taxonomy is put forth, weighing the categories against the three-pronged ethical permissibility test established utilizing elements from formalism, conventionalism and broad internalism sheds lights on what deceptive practices should be deemed ethically permissible for use and which tactics should not be a part of an athlete’s repertoire. By understanding which categories of deception are permissible, the most fair and athletically excellent contest can be created between the opposing players of teams.