948 resultados para GABA Modulators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most intriguing functions of the brain is the ability to learn and memorize. The mechanism through which memory and learning are expressed requires the activation of NMDA receptors (NMDARs). These molecular entities are placed at the postsynaptic density of excitatory synapses and their function is tightly controlled by the actions of several modulators at the extracellular, intracellular and pore sites. A large part of the intracellular modulation comes from the action of G-protein coupled receptors (GPCRs). Through intracellular cascades typically involving kinases and phosphatases, GPCRs potentiate or inhibit NMDARs, controlling the conductive state but also the trafficking within the synapse. The GPCRs are involved in the modulation of a variety of brain functions. Many of them control cognition, memory and learning performance, therefore, their effects on NMDARs are extensively studied. The orexinergic system signals through GPCRs and it is well known for the regulation of waking, feeding, reward and autonomic functions. Moreover, it is involved in potentiating hippocampus-related cognitive tasks. Orexin receptors and fibers are present within the hippocampus, but whether these directly modulate hippocampal cells and synapses has not yet been determined. During my thesis, I studied orexinergic actions on excitatory synaptic transmission via whole-cell patch-clamp recordings in rat acute hippocampal slices. I observed that exogenously applied orexin-A (ox-A) exerted a strong inhibitory action on NMDAR-mediated synaptic potentials at mossy fiber (MF)-CA3 synapses, by postsynaptically activating orexin-2 receptors, a minor inhibition at Schaffer collateral-CAl synapses and did not affect other synapses with the CA3 area. Moreover, I demonstrated that the susceptibility of NMDARs to ox- A depends on the tone of endogenous orexin known to fluctuate during the day-night cycle. In fact, in slices prepared during the active period of the rats, when endogenous orexin levels are high, NMDAR-currents were not affected by exogenously applied ox-A. The inhibitory effect of ox-A was, however, reverted when interfering with the orexinergic system through intraperitoneal injections of almorexant, a dual orexin receptor antagonist, during the active phase prior to slice preparation. This thesis work suggests that the orexinergic system regulates NMDAR-dependent information flow through select hippocampal pathways depending on the time-of-day. The specific orexinergic modulation of NMDARs at MFs dampens the excitability of the hippocampal circuit and could impede the mechanisms related to memory formation, possibly also following extended periods of waking. -- La capacité d'apprentissage et de mémorisation est une des fonctions les plus intrigantes de notre cerveau. Il a été montré qu'elles requièrent l'activation des récepteurs NMDA (NMDARs). Ces entités moléculaires sont présentes au niveau de la densité post-synaptique des synapses excitatrices et leur fonction est étroitement contrôlée par l'action de nombreux modulateurs au niveau extracellulaire, intracellulaire et membranaire de ces récepteurs. Une grande partie de la modulation intracellulaire s'effectue via l'action de récepteurs couplés aux protéines G (GPCRs). Grace à leurs cascades intracellulaires typiquement impliquant des kinases et des phosphatases, les GPCRs favorisent l'activation ou l'inhibition des NMDARs, contrôlant ainsi leur perméabilité mais aussi leur mouvement à la synapse. Les GPCRs sont impliquées dans de nombreuses fonctions cérébrales telles que la cognition, la mémoire ainsi que la capacité d'apprentissage c'est pour cela que leurs effets sur les NMDARs sont très étudiés. Le système orexinergique fait intervenir ces GPCRs et est connu par son rôle dans la régulation de fonctions physiologiques telles que l'éveil, la prise alimentaire, la récompense ainsi que d'autres fonctions du système nerveux autonome. De plus, ce système est impliqué dans la régulation de tâches cognitives liées à l'hippocampe. Bien que les fibres et les récepteurs à l'orexine soient présents dans l'hippocampe, leur mécanisme d'action sur les cellules et les synapses de l'hippocampe n'a pas encore été élucidé. Durant ma thèse, je me suis intéressée aux effets de l'orexine sur la transmission synaptique excitatrice en utilisant la méthode d'enregistrement en patch-clamp en configuration cellule entière sur des tranches aiguës d'hippocampes de rats. J'ai observé que l'application exogène d'orexine A d'une part inhibe fortement les courants synaptiques dépendants de l'activation des NMDARs au niveau de la synapse entre les fibres moussues et CA3 via l'activation post-synaptique des orexine récepteurs 2 mais d'autre part n'inhibe que de façon mineure la synapse entre les collatérales de Schaffer et CAI et n'affecte pas les autres synapses impliquant CA3. J'ai également démontré que la sensibilité des NMDARs à l'orexine A dépend de sa concentration endogène qui fluctue durant le cycle éveil-sommeil. En effet, lorsque les coupes d'hippocampes sont préparées durant la période active de l'animal correspondant à un niveau endogène d'orexine élevé, l'application exogène d'orexine A n'a aucun effet sur les courants dépendants de l'activation des NMDARs. Cependant, l'injection dans le péritoine, durant la phase active de l'animal, d'un antagoniste des orexine récepteurs, l'almorexant, va supprimer l'effet inhibiteur de l'orexine A. Les résultats de ma thèse suggèrent donc que le système orexinergique module les informations véhiculées par les NMDARs via des voies de signalisation sélectives de l'hippocampe en fonction du moment de la journée. La modulation orexinergique des NMDARs au niveau des fibres moussues diminue ainsi l'excitabilité du circuit hippocampal et pourrait entraver les mécanismes liés à la formation de la mémoire, potentiellement après de longues périodes d'éveil.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review covers the latest developments of long synthetic peptide technology for the rapid identification and development of malaria vaccine candidates and immunological modulators. A brief description of the two most common solid-phase synthetic procedures, together with the latest advances in optimisation of peptide chain assembly and analytical instrumentation, is given, with special attention to non-specialists. Several examples of vaccine candidates developed in the authors' or their collaborators' laboratories are also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of GABA(B) receptors in sleep is still poorly understood. GHB (γ-hydroxybutyric acid) targets these receptors and is the only drug approved to treat the sleep disorder narcolepsy. GABA(B) receptors are obligate dimers comprised of the GABA(B2) subunit and either one of the two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b). To better understand the role of GABA(B) receptors in sleep regulation, we performed electroencephalogram (EEG) recordings in mice devoid of functional GABA(B) receptors (1(-/-) and 2(-/-)) or lacking one of the subunit 1 isoforms (1a(-/-) and 1b(-/-)). The distribution of sleep over the day was profoundly altered in 1(-/-) and 2(-/-) mice, suggesting a role for GABA(B) receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent role for GABA(B1a) compared with the GABA(B1b) isoform. Moreover, we found that GABA(B1a) protects against the spontaneous seizure activity observed in 1(-/-) and 2(-/-) mice. We also evaluated the effects of the GHB-prodrug GBL (γ-butyrolactone) and of baclofen (BAC), a high-affinity GABA(B) receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1(-/-) and 2(-/-) mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1(-/-) and 2(-/-) mice. The differential effects of GBL and BAC might be attributed to differences in GABA(B)-receptor affinity. These results also indicate that all GBL effects are mediated through GABA(B) receptors, although these receptors do not seem to be involved in mediating the BAC-induced hypersomnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome is an inherited disease with cognitive, behavioral, and neurologic manifestations, resulting from a single genetic mutation. A variety of treatments that target individual symptoms of fragile X syndrome are currently utilized with limited efficacy. Research in animal models has resulted in the development of potential novel pharmacologic treatments that target the underlying molecular defect in fragile X syndrome, rather than the resultant symptoms. This review describes recent advances in our understanding of the molecular basis of fragile X syndrome and summarizes the ongoing clinical research programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the cerebrospinal fluid of 26 drug-naive schizophrenics (DSM-III- R), we observed that the level of glutathione ([GSH]) and of its metabolite γ-Glu-Gln was decreased by 27% and 16% respectively. Using a new in-vivo method based on magnetic resonance spec- troscopy, [GSH] was measured in the medial prefrontal cortex of 18 schizophrenics and found to be 52 % lower than in controls (n = 20). This is consistent with the recently observed decreased mRNA levels in fibroblasts of patients (n=32) of the two GSH synthesizing en- zymes (glutathione synthetase (GSS), and glutamate-cysteine ligase M (GCLM) the modulatory subunit of glutamate-cysteine ligase). Moreover, the level of GCLM expression in fibroblasts correlates neg- atively with the psychopathology (positive, general and some nega- tive symptoms). Thus, the observed difference in gene expression is not only the cause of low brain [GSH], but is also related to the sever- ity of symptoms, suggesting that fibroblasts are adequate surrogate for brain tissue. A hypothesis was proposed, based on a central role of GSH in the pathophysiology of schizophrenia. GSH is an important endogenous redox regulator and neuroactive substance. GSH is pro- tecting cells from damage by reactive oxygen species generated, among others, by the metabolism of dopamine. A GSH deficit-in- duced oxidative stress would lead to lipid peroxidation and micro-le- sions in the surrounding of catecholamine terminals, affecting the synaptic contacts on dendritic spines of cortical neurones, where ex- citatory glutamatergic terminals converge with dopaminergic ones. This would lead to spines degeneration and abnormal nervous con- nections or structural disconnectivity, possibly responsible for posi- tive, perceptive and cognitive symptoms of schizophrenia. In addi- tion, a GSH deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental biochemical, cell biological and behav- ioral data are consistent with the proposed mechanism: decreasing pharmacologically [GSH] in experimental models, with or without blocking DA uptake (GBR12909), induces morphological and behav- ioral changes similar to those observed in patients. Dendritic spines: (a) In neuronal cultures, low [GSH] and DA induce decreased density of neural processes; (b) In developing rats (p5-p16), [GSH] deficit and GBR induce a decrease in normal spines in prefrontal pyramids and in GABA-parvalbumine but not of -calretinine immunoreactivity in anterior cingulate. NMDA-dependant synaptic plasticity: GSH deple- I/13 tion in hippocampal slices impairs long-term potentiation. Develop- ing rats with low [GSH] and GBR have deficit in olfactory integration and in object recognition which appears earlier in males than fe- males, in analogy to the delay of the psychosis onset between man and woman. In summary, a deficit of GSH and/or GSH-related enzymes during early development could constitute a major vulnerability fac- tor in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphosphate (iPOP) is a linear polymer of orthophosphate units linked together by high energy phosphoanhydride bonds. It is found in all organisms, localized in organelles called acidocalcisomes and ranges from a few to few hundred monomers in length. iPOP has been found to play a vast array of roles in all organisms, including phosphate and energy metabolism, regulation of enzymes, virulence, pathogenicity, bone remodelling and blood clotting, among many others. Recently it was found that iPOP levels were increased in myeloma cells. The growing interest in iPOP in human cell lines makes it an interesting molecule to study. However, not much is known about its metabolism in eukaryotes. Acidocalcisomes are electron dense, acidic organelles that belong to the group of Lysosome Related Organelles (LROs). The conservation of acidocalcisomes among all kingdoms of life is suggestive of their important roles for the organisms. However, they are difficult to analyse because of limited biochemical tools for investigation. Yeast vacuoles present remarkable similarities to acidocalcisomes in terms of their physiological and structural features, including synthesis and storage of iPOP, which make them an ideal candidate to study biological processes which are shared between vacuoles and acidocalcisomes. The availability of tools for genetic manipulation and isolation of vacuoles makes yeast a candidate of choice for the characterization of iPOP synthesis in eukaryotes. Our group has identified the Vacuolar Transporter Chaperone (VTC) complex as iPOP polymerase and identified the catalytic subunit (Vtc4). The goal of my study was to characterize the process of iPOP synthesis by isolated vacuoles and to reconstitute iPOP synthesis in liposomes. The first step was to develop a method for monitoring iPOP by isolated vacuoles over time and comparing it with previously known methods. Next, a detailed characterization was performed to determine the modulators of the process, both for intact as well as solubilized vacuoles. Finally, attempts were made to purify the VTC complex and reconstitute it in liposomes. A parallel line of study was the translocation and storage of synthesized iPOP in the lumen of the vacuoles. As a result of this study, it is possible to determine distinct pools of iPOP- inside and outside the vacuolar lumen. Additionally, I establish that the vacuolar lysate withstands harsh steps during reconstitution on liposomes and retains iPOP synthesizing activity. The next steps will be purification of the intact VTC complex and its structure determination by cryo-electron microscopy. - Les organismes vivants sont composés d'une ou plusieurs cellules responsables des processus biologiques élémentaires tels que la digestion, la respiration, la synthèse et la reproduction. Leur environnement interne est en équilibre et ils réalisent un très grand nombre de réactions chimiques et biochimiques pour maintenir cet équilibre. A différents compartiments cellulaires, ou organelles, sont attribuées des tâches spécifiques pour maintenir les cellules en vie. L'étude de ces fonctions permet une meilleure compréhension de la vie et des organismes vivants. De nombreux processus sont bien connus et caractérisés mais d'autres nécessitent encore des investigations détaillées. L'un de ces processus est le métabolisme des polyphosphates. Ces molécules sont des polymères linéaires de phosphate inorganique dont la taille peut varier de quelques dizaines à quelques centaines d'unités élémentaires. Ils sont présents dans tous les organismes, des bactéries à l'homme. Ils sont localisés principalement dans des compartiments cellulaires appelés acidocalcisomes, des organelles acides observés en microscopie électronique comme des structures denses aux électrons. Les polyphosphates jouent un rôle important dans le stockage et le métabolisme de l'énergie, la réponse au stress, la virulence, la pathogénicité et la résistance aux drogues. Chez l'homme, ils sont impliqués dans la coagulation du sang et le remodelage osseux. De nouvelles fonctions biologiques des polyphosphates sont encore découvertes, ce qui accroît l'intérêt des chercheurs pour ces molécules. Bien que des progrès considérables ont été réalisés afin de comprendre la fonction des polyphosphates chez les bactéries, ce qui concerne la synthèse, le stockage et la dégradation des polyphosphates chez les eucaryotes est mal connu. Les vacuoles de la levure Saccharomyces cerevisiae sont similaires aux acidocalcisomes des organismes supérieurs en termes de structure et de fonction. Les acidocalcisomes sont difficiles à étudier car il n'existe que peu d'outils génétiques et biochimiques qui permettent leur caractérisation. En revanche, les vacuoles peuvent être aisément isolées des cellules vivantes et manipulées génétiquement. Les vacuoles comme les acidocalcisomes synthétisent et stockent les polyphosphates. Ainsi, les découvertes faites grâce aux vacuoles de levures peuvent être extrapolées aux acidocalcisomes des organismes supérieurs. Le but de mon projet était de caractériser la synthèse des polyphosphates par des vacuoles isolées. Au cours de mon travail de thèse, j'ai mis au point une méthode de mesure de la synthèse des polyphosphates par des organelles purifés. Ensuite, j'ai identifié des composés qui modulent la réaction enzymatique lorsque celle-ci a lieu dans la vacuole ou après solubilisation de l'organelle. J'ai ainsi pu mettre en évidence deux groupes distincts de polyphosphates dans le système : ceux au-dehors de la vacuole et ceux en-dedans de l'organelle. Cette observation suggère donc très fortement que les vacuoles non seulement synthétisent les polyphosphates mais aussi transfère les molécules synthétisées de l'extérieur vers l'intérieur de l'organelle. Il est très vraisemblable que les vacuoles régulent le renouvellement des polyphosphates qu'elles conservent, en réponse à des signaux cellulaires. Des essais de purification de l'enzyme synthétisant les polyphosphates ainsi que sa reconstitution dans des liposomes ont également été entrepris. Ainsi, mon travail présente de nouveaux aspects de la synthèse des polyphosphates chez les eucaryotes et les résultats devraient encourager l'élucidation de mécanismes similaires chez les organismes supérieurs. - Les polyphosphates (iPOP) sont des polymères linéaires de phosphates inorganiques liés par des liaisons phosphoanhydres de haute énergie. Ces molécules sont présentes dans tous les organismes et localisées dans des compartiments cellulaires appelés acidocalcisomes. Elles varient en taille de quelques dizaines à quelques centaines d'unités phosphate. Des fonctions nombreuses et variées ont été attribuées aux iPOP dont un rôle dans les métabolismes de l'énergie et du phosphate, dans la régulation d'activités enzymatiques, la virulence, la pathogénicité, le remodelage osseux et la coagulation sanguine. Il a récemment été montré que les cellules de myélome contiennent une grande quantité de iPOP. Il y donc un intérêt croissant pour les iPOP dans les lignées cellulaires humaines. Cependant, très peu d'informations sur le métabolisme des iPOP chez les eucaryotes sont disponibles. Les acidocalcisomes sont des compartiments acides et denses aux électrons. Ils font partie du groupe des organelles similaires aux lysosomes (LROs pour Lysosome Related Organelles). Le fait que les acidocalcisomes soient conservés dans tous les règnes du vivant montrent l'importance de ces compartiments pour les organismes. Cependant, l'analyse de ces organelles est rendue difficile par l'existence d'un nombre limité d'outils biochimiques permettant leur caractérisation. Les vacuoles de levures possèdent des aspects structuraux et physiologiques très similaires à ceux des acidocalcisomes. Par exemple, ils synthétisent et gardent en réserve les iPOP. Ceci fait des vacuoles de levure un modèle idéal pour l'étude de processus biologiques conservés chez les vacuoles et les acidocalcisomes. De plus, la levure est un organisme de choix pour l'étude de la synthèse des iPOP compte-tenu de l'existence de nombreux outils génétiques et la possibilité d'isoler des vacuoles fonctionnelles. Notre groupe a identifié le complexe VTC (Vacuole transporter Chaperone) comme étant responsable de la synthèse des iPOP et la sous-unité Vtc4p comme celle possédant l'activité catalytique. L'objectif de cette étude était de caractériser le processus de synthèse des iPOP en utilisant des vacuoles isolées et de reconstituer la synthèse des iPOP dans des liposomes. La première étape a consisté en la mise au point d'un dosage permettant la mesure de la quantité de iPOP synthétisés par les organelles isolés en fonction du temps. Cette nouvelle méthode a été comparée aux méthodes décrites précédemment dans la littérature. Ensuite, la caractérisation détaillée du processus a permis d'identifier des composés modulateurs de la réaction à la fois pour des vacuoles intactes et des vacuoles solubilisées. Enfin, des essais de purification du complexe VTC et sa reconstitution dans des liposomes ont été entrepris. De façon parallèle, une étude sur la translocation et le stockage des iPOP dans le lumen des vacuoles a été menée. Il a ainsi été possible de mettre en évidence différents groupes de iPOP : les iPOP localisés à l'intérieur et ceux localisés à l'extérieur des vacuoles isolées. De plus, nous avons observé que le lysat vacuolaire n'est pas détérioré par les étapes de reconstitution dans les liposomes et conserve l'activité de synthèse des iPOP. Les prochaines étapes consisteront en la purification du complexe intact et de la détermination de sa structure par cryo-microscopie électronique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The death receptor Fas is a member of the tumor necrosis factor receptor family; upon interaction with its ligand it efficiently activates caspases and induces apoptosis. Despite abundant Fas surface expression, however, Fas death-signals are frequently interrupted. Many viruses express antiapoptotic proteins, including caspase inhibitors, Bcl-2 homologues and death-effector-domain-containing proteins that are termed FLIPs (FLICE [Fas-associated death-domain-like IL-1beta-converting enzyme]-inhibitory proteins). Cellular homologues of these inhibitors have been identified. Cellular FLIPs structurally resemble caspase-8 except that they lack proteolytic activity. FLIPs are highly expressed in tumor cells, T lymphocytes and healthy, but not injured, myocytes; this suggests a critical role of FLIPs as endogenous modulators of apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Glutathione (GSH) is a major redox regulator and antioxidant and is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients [Do et al. (2000) Eur J Neurosci 12:3721]. The genes of the key GSH-synthesizing enzyme, glutamate- cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, are associated with schizophrenia, suggesting that the deficit in GSH synthesis is of genetic origin [Gysin et al. (2007) PNAS 104:16621]. GCLM knock-out (KO) mice, which display an 80% decrease in brain GSH levels, have abnormal brain morphology and function [Do et al. (2009) Curr Opin Neurobiol 19:220]. Developmental redox deregulation by impaired GSH synthesis and environmental risk factors generating oxidative stress may have a central role in schizophrenia. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. Methods: The neurochemical profile of the anterior and posterior cortical areas of male and female GCLM KO and wild-type mice was determined by in vivo 1H NMR spectroscopy on postnatal days 10, 20, 30, 60 and 90, under 1 to 1.5% isoflurane anaesthesia. Localised 1H NMR spectroscopy was performed on a 14.1 T, 26 cm VNMRS spectrometer (Varian, Magnex) using a home-built 8 mm diameter quadrature surface coil (used both for RF excitation and signal reception). Spectra were acquired using SPECIAL with TE of 2.8 ms and TR of 4 s from VOIs placed in anterior or posterior regions of the cortex [Mlynárik et al. (2006) MRM 56:965]. LCModel analysis allowed in vivo quantification of a neurochemical profile composed of 18 metabolites. Results: GCLM KO mice displayed nearly undetectable GSH levels as compared to WT mice, demonstrating their drastic redox deregulation. Depletion of GSH triggered alteration of metabolites related to its synthesis, namely increase of glycine and glutamate levels during development (P20 and P30). Concentrations of glutamine and aspartate that are produced from glutamate were also increased in GCLM KO animals relative to WT. In addition, GCLM KO mice also showed higher levels of N-acetylaspartate that originates from the acetylation of aspartate. These metabolites are particularly implicated in neurotransmission processes and in mitochondrial oxidative metabolism. Their increase may indicate impaired mitochondrial metabolism with concomitant accumulation of lactate in the adult mice (P60 and P90). In addition, the GSH depletion triggers reduction of GABA concentration in anterior cortex of the P60 mice, which is in accordance with known impairment of GABAergic interneurons in that area. Changes were generally more pronounced in males than in females at P60, which is consistent with earlier disease onset in male patients. Discussion: In conclusion, the observed metabolic alterations in the cortex of a mouse model of redox deregulation suggest impaired mitochondrial metabolism and altered neurotransmission. The results also highlight the age between P20 and P30 as a sensitive period during the development for these alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells responsible for direction-selective GABA release, we performed whole-cell recordings from starburst cells in mouse retina. Voltage-clamp recordings revealed prominent voltage-dependent K+ currents. The currents were mostly blocked by 1 mm TEA, activated rapidly at voltages more positive than -20 mV, and deactivated quickly, properties reminiscent of the currents carried by the Kv3 subfamily of K+ channels. Immunoblots confirmed the presence of Kv3.1 and Kv3.2 proteins in retina and immunohistochemistry revealed their expression in starburst cell somata and dendrites. The Kv3-like current in starburst cells was absent in Kv3.1-Kv3.2 knock-out mice. Current-clamp recordings showed that the fast activation of the Kv3 channels provides a voltage-dependent shunt that limits depolarization of the soma to potentials more positive than -20 mV. This provides a mechanism likely to contribute to the electrical isolation of individual starburst cell dendrites, a property thought essential for direction selectivity. This function of Kv3 channels differs from that in other neurons where they facilitate high-frequency repetitive firing. Moreover, we found a gradient in the intensity of Kv3.1b immunolabeling favoring proximal regions of starburst cells. We hypothesize that this Kv3 channel gradient contributes to the preference for centrifugal signal flow in dendrites underlying direction-selective GABA release from starburst amacrine cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: Hormone pathway interactions are crucial in shaping plant development, such as synergism between the auxin and brassinosteroid pathways in cell elongation. Both hormone pathways have been characterized in detail, revealing several feedback loops. The complexity of this network, combined with a shortage of kinetic data, renders its quantitative analysis virtually impossible at present.Results: As a first step towards overcoming these obstacles, we analyzed the network using a Boolean logic approach to build models of auxin and brassinosteroid signaling, and their interaction. To compare these discrete dynamic models across conditions, we transformed them into qualitative continuous systems, which predict network component states more accurately and can accommodate kinetic data as they become available. To this end, we developed an extension for the SQUAD software, allowing semi-quantitative analysis of network states. Contrasting the developmental output depending on cell type-specific modulators enabled us to identify a most parsimonious model, which explains initially paradoxical mutant phenotypes and revealed a novel physiological feature.