913 resultados para Fusion of label field
Resumo:
Based on neurophysiological findings and a grid to score binocular visual field function, two hypotheses concerning the spatial distribution of fixations during visual search were tested and confirmed in healthy participants and patients with homonymous visual field defects. Both groups showed significant biases of fixations and viewing time towards the centre of the screen and the upper screen half. Patients displayed a third bias towards the side of their field defect, which represents oculomotor compensation. Moreover, significant correlations between the extent of these three biases and search performance were found. Our findings suggest a new, more dynamic view of how functional specialisation of the visual field influences behaviour.
Resumo:
We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.
Resumo:
INTRODUCTION The aims of this study were to compare lateral cephalograms with other radiologic methods for diagnosing suspected fusions of the cervical spine and to validate the assessment of congenital fusions and osteoarthritic changes against the anatomic truth. METHODS Four cadaver heads were selected with fusion of vertebrae C2 and C3 seen on a lateral cephalogram. Multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) were performed and assessed by 5 general radiologists and 5 oral radiologists, respectively. Vertebrae C2 and C3 were examined for osseous fusions, and the left and right facet joints were diagnosed for osteoarthritis. Subsequently, the C2 and C3 were macerated and appraised by a pathologist. Descriptive analysis was performed, and interrater agreements between and within the groups were computed. RESULTS All macerated specimens showed osteoarthritic findings of varying degrees, but no congenital bony fusion. All observers agreed that no fusion was found on MDCT or CBCT. They disagreed on the prevalence of osteoarthritic deformities (general radiologists/MDCT, 100%; oral radiologists/CBCT, 93.3%) and joint space assessment in the facet joints (kappa = 0.452). The agreement within the rater groups differed considerably (general radiologists/MDCT, kappa = 0.612; oral radiologists/CBCT, kappa = 0.240). CONCLUSIONS Lateral cephalograms do not provide dependable data to assess the cervical spine for fusions and cause false-positive detections. Both MDCT interpreted by general radiologists and CBCT interpreted by oral radiologists are reliable methods to exclude potential fusions. Degenerative osteoarthritic changes are diagnosed more accurately and consistently by general radiologists evaluating MDCT.
Resumo:
Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.
Resumo:
BACKGROUND: Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive EEG is highly relevant. Linear fusion of CT and MRI images may display the contacts in the wrong position due to brain shift effects. OBJECTIVE: A retrospective study in five patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the pre-implantation MRI as compared to linear fusion. METHODS: An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm (LF) were used on preoperative MRI and post-implantation CT scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift and brain shifts due to pneumencephalus were measured. RESULTS: Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7mm (SD 1.25) was corrected to 0.4mm (SD 0.8) after AEF and to 0.0mm (SD 0) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3mm after LF to 0.0mm after AEF and GEF (p<.001). Mean total relative corrections of 3.1 mm (SD 1.85) after AEF and 3.0mm (SD 1.77) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumencephalus. CONCLUSION: The technique provided a clear improvement in fusion of pre- and post-implantation scans, although the accuracy is difficult to evaluate.
Resumo:
This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.
The impact of common versus separate estimation of orbit parameters on GRACE gravity field solutions
Resumo:
Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites’ orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.
Resumo:
Contagious caprine pleuropneumonia (CCPP) is a highly contagious disease caused by Mycoplasma capricolum subsp. capripneumoniae that affects goats in Africa and Asia. Current available methods for the diagnosis of Mycoplasma infection, including cultivation, serological assays, and PCR, are time-consuming and require fully equipped stationary laboratories, which make them incompatible with testing in the resource-poor settings that are most relevant to this disease. We report a rapid, specific, and sensitive assay employing isothermal DNA amplification using recombinase polymerase amplification (RPA) for the detection of M. capricolum subsp. capripneumoniae. We developed the assay using a specific target sequence in M. capricolum subsp. capripneumoniae, as found in the genome sequence of the field strain ILRI181 and the type strain F38 and that was further evidenced in 10 field strains from different geographical regions. Detection limits corresponding to 5 × 10(3) and 5 × 10(4) cells/ml were obtained using genomic DNA and bacterial culture from M. capricolum subsp. capripneumoniae strain ILRI181, while no amplification was obtained from 71 related Mycoplasma isolates or from the Acholeplasma or the Pasteurella isolates, demonstrating a high degree of specificity. The assay produces a fluorescent signal within 15 to 20 min and worked well using pleural fluid obtained directly from CCPP-positive animals without prior DNA extraction. We demonstrate that the diagnosis of CCPP can be achieved, with a short sample preparation time and a simple read-out device that can be powered by a car battery, in <45 min in a simulated field setting.
Resumo:
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans.
Resumo:
The 21st Annual Biochemical Engineering Symposium was held at Colorado State University on April 20, 1991. The primary goals of this symposium series are to provide an opportunity for students to present and publish their research work and to promote informal discussions on biochemical engineering research. Contents High Density Fed-Batch Cultivation and Energy Metabolism of Bacillus thuringtensis; W.-M. Liu, V. Bihari, M. Starzak, and R.K. Bajpai Influences of Medium Composition and Cultivation Conditions on Recombinant Protein Production by Bacillus subtilis; K. Park, P.M. Linzmaier, and K.F. Reardon Characterization of a Foreign Gene Expression in a Recombinant T7 Expression System Infected with λ Phages; F. Miao and D.S. Kompala Simulation of an Enzymatic Membrane System with Forced Periodic Supply of Substrate; N. Nakaiwa, M. Yashima, L.T. Fan, and T. Ohmori Batch Extraction of Dilut Acids in a Hollow Fiber Module; D.G. O'Brien and C.E. Glatz Evaluation of a New Electrophoretic Device for Protein Purification; M.-J. Juang and R.G. Harrison Crossflow Microfiltration and Membrane Fouling for Yeast Cell Suspension; S. Redkar and R. Davis Interaction of MBP-β-Galactosidase Fusion Protein with Starch; L. Taladriz and Z. Nikolov Predicting the Solubility of Recombinant Proteins in Escherichia coli; D.L. Wilkinson and R.G. Harrison Evolution of a Phase-Separated, Gravity-Independent Bioractor; P.E. Villeneuve and E.H. Dunlop A Strategy for the Decontamination of Soils Containing Elevated Levels of PCP; S. Ghoshal, S. K. Banelji, and RK. Bajpai Practical Considerations for Implementation of a Field Scale In-Situ Bioremediation Project; J.P. McDonald, CA Baldwin, and L.E. Erickson Parametric Sensitivity Studies of Rhizopus oligosporus Solid Substrate Fermentation; J. Sargantanis, M.N. Karim, and V.G. Murphy, and RP. Tengerdy Production of Acetyl-Xylan Esterase from Aspergillus niger; M.R Samara and J.C. Linden Biological and Latex Particle Partitioning in Aqueous Two-Phase Systems; D.T.L. Hawker, RH. Davis, P.W. Todd, and R Lawson Novel Bioreactor /Separator for Microbial Desulfurization of Coal; H. Gecol, RH. Davis, and J .R Mattoon Effect of Plants and Trees on the Fate, Transport and Biodegradation of Contaminants in the Soil and Ground Water; W. Huang, E. Lee, J.F. Shimp, L.C. Davis, L.E. Erickson, and J.C. Tracy Sound Production by Interfacial Effects in Airlift Reactors; J. Hua, T.-Y. Yiin, LA Glasgow, and L.E. Erickson Soy Yogurt Fermentation of Rapid Hydration Hydrothermal Cooked Soy Milk; P. Tuitemwong, L.E. Erickson, and D.Y.C. Fung Influence of Carbon Source on Pentachlorophenol Degradation by Phanerochaete chrysosportum in Soil; C.-Y.M. Hsieh, RK. Bajpai, and S.K. Banerji Cellular Responses of Insect Cells Spodopiera frugiperda -9 to Hydrodynamic Stresses; P.L.-H. Yeh and RK. Bajpa1 A Mathematical Model for Ripening of Cheddar Cheese; J. Kim, M. Starzak, G.W. Preckshoi, and R.K. Bajpai
Resumo:
Basal melt of ice shelves may lead to an accumulation of disc-shaped ice platelets underneath nearby sea ice, to form a sub-ice platelet layer. Here we present the seasonal cycle of sea ice attached to the Ekström Ice Shelf, Antarctica, and the underlying platelet layer in 2012. Ice platelets emerged from the cavity and interacted with the fast-ice cover of Atka Bay as early as June. Episodic accumulations throughout winter and spring led to an average platelet-layer thickness of 4 m by December 2012, with local maxima of up to 10 m. The additional buoyancy partly prevented surface flooding and snow-ice formation, despite a thick snow cover. Subsequent thinning of the platelet layer from December onwards was associated with an inflow of warm surface water. The combination of model studies with observed fast-ice thickness revealed an average ice-volume fraction in the platelet layer of 0.25 +/- 0.1. We found that nearly half of the combined solid sea-ice and ice-platelet volume in this area is generated by heat transfer to the ocean rather than to the atmosphere. The total ice-platelet volume underlying Atka Bay fast ice was equivalent to more than one-fifth of the annual basal melt volume under the Ekström Ice Shelf.
Resumo:
Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.
Resumo:
Melting-phase relations at high pressures and Sr-Nd isotopic compositions are reported for basalts collected from the western Indian Ocean during Ocean Drilling Program Leg 115. Based on the concentrations of high-field-strength elements, we have subdivided the basalts into eight groups. A tholeiitic primary magma estimated using an olivine maximum fractionation model is representative of depleted lavas. This melt is in equilibrium with lherzolite minerals at 1.3 GPa and 1330°C under dry conditions. Also, an alkaline primary magma, representative of enriched lavas, is not saturated with orthopyroxene under dry conditions, but it is saturated with lherzolite minerals under CO2-saturated conditions at 1.7 GPa and 1350°C. These results imply that the tholeiitic magmas were segregated from mantle diapirs at shallower levels than the alkaline magmas. The highest 143Nd/144Nd value is obtained for the most depleted tholeiitic basalts, and the lowest value corresponds to the enriched alkaline basalt. The Sr isotopes of the basalts range from 0.70378 to 0.70449 and are inversely correlated with the Nd isotopic values. The present experimental and geochemical data suggest that depleted mantle material is underlain by the enriched material in the upper mantle beneath the region.
Resumo:
Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion by trapping eroded material. In this data set, we present data of sediment trapped by 12 field margins during the monsoon season of 2013 in an agricultural landscape in the Haean-myun catchment in South Korea. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("managed flat", "managed steep", "natural flat" and "natural steep") with Astroturf mats with a size of 34 cm x 25 cm (850 cm**2). The mats (n = 15 / site) were installed at three levels: upslope, immediately before the field margin to quantify the sediments that reach it, in the middle of the field margin to quantify the locally trapped sediments, and after the field margin at the downslope edge to quantify the sediments that leave the field margin to the next field or to the stream. Sediment was collected after each rain event until the end of the monsoon season.