942 resultados para Framework cross-platform
Resumo:
Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional pi-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (beta-carotene and beta-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for beta-apo-8'-carotenal, which was attributed to a overlapping of I(I)B(u) +-like and 2(I)Ag(-)-like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590157]
Resumo:
In this article, we evaluate the use of simple Lee-Goldburg cross-polarization (LG-CP) NMR experiments for obtaining quantitative information of molecular motion in the intermediate regime. In particular, we introduce the measurement of Hartmann-Hahn matching profiles for the assessment of heteronuclear dipolar couplings as well as dynamics as a reliable and robust alternative to the more common analysis of build-up curves. We have carried out dynamic spin dynamics simulations in order to test the method's sensitivity to intermediate motion and address its limitations concerning possible experimental imperfections. We further demonstrate the successful use of simple theoretical concepts, most prominently Anderson-Weiss (AW) theory, to analyze the data. We further propose an alternative way to estimate activation energies of molecular motions, based upon the acquisition of only two LG-CP spectra per temperature at different temperatures. As experimental tests, molecular jumps in imidazole methyl sulfonate, trimethylsulfoxonium iodide, and bisphenol A polycarbonate were investigated with the new method.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.
Resumo:
This paper analyses an optical network architecture composed by an arrangement of nodes equipped with multi-granular optical cross-connects (MG-OXCs) in addition to the usual optical cross-connects (OXCs). Then, selected network nodes can perform both waveband as well as traffic grooming operations and our goal is to assess the improvement on network performance brought by these additional capabilities. Specifically, the influence of the MG-OXC multi-granularity on the blocking probability is evaluated for 16 classes of service over a network based on the NSFNet topology. A mechanism of fairness in bandwidth capacity is also added to the connection admission control to manage the blocking probabilities of all kind of bandwidth requirements. Comprehensive computational simulation are carried out to compare eight distinct node architectures, showing that an adequate combination of waveband and single-wavelength ports of the MG-OXCs and OXCs allow a more efficient operation of a WDM optical network carrying multi-rate traffic.
Resumo:
The objective of the present paper is to thermally characterize a cross-flow heat exchanger featuring a new cross-flow arrangement, which may find application in contemporary refrigeration and automobile industries. The new flow arrangement is peculiar in the sense that it possesses two fluid circuits extending in the form of two tube rows, each with two tube lines. To assess the heat exchanger performance, it is compared against that for the standard two-pass counter-cross-flow arrangement. The two-part comparison is based on the thermal effectiveness and the heat exchanger efficiency for several combinations of the heat capacity rate ratio, C*, and the number of transfer units, NTU. In addition, a third comparison is made in terms of the so-called ""heat exchanger reversibility norm"" (HERN) through the influence of various parameters such as the inlet temperature ratio, T, and the heat capacity rate ratio, C*, for several fixed NTU values. The proposed new flow arrangement delivers higher thermal effectiveness and higher heat exchanger efficiency, resulting in lesser entropy generation over a wide range of C* and NTU values. These metrics are quantified with respect to the arrangement widely used in refrigeration industry due to its high effectiveness, namely, the standard two-pass counter-cross-flow heat exchanger. The new flow arrangement seems to be a promising avenue in situations where cross-flow heat exchangers for single-phase fluid have to be used in refrigeration units. (c) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper describes the manufacture of tubular ceramic membranes and the study of their performance in the demulsification of soybean oil/water emulsions. The membranes were made by iso-static pressing method and micro and macro structurally characterized by SEM, porosimetry by mercury intrusion and determination of apparent density and porosity. The microfiltration tests were realized on an experimental workbench, and fluid dynamic parameters, such as transmembrane flux and pressure were used to evaluate the process relative to the oil phase concentration (analysed by TOC measurements) in the permeate. The results showed that the membrane with pores` average diameter of 1.36 mu m achieved higher transmembrane flux than the membrane with pores` average diameter of 0.8 mu m. The volume of open pores (responsible for the permeation) was predominant in the total porosity, which was higher than 50% for all tested membranes. Concerning demulsification, the monolayer membranes were efficacious, as the rejection coefficient was higher than 99%.
Resumo:
The confined flows in tubes with permeable surfaces arc associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration, polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Product lifecycle management (PLM) innovates as it defines both the product as a central element to aggregate enterprise information and the lifecycle as a new time dimension for information integration and analysis. Because of its potential benefits to shorten innovation lead-times and to reduce costs, PLM has attracted a lot of attention at industry and at research. However, the current PLM implementation stage at most organisations still does not apply the lifecycle management concepts thoroughly. In order to close the existing realisation gap, this article presents a process oriented framework to support effective PLM implementation. The framework central point consists of a set of lifecycle oriented business process reference models which links the necessary fundamental concepts, enterprise knowledge and software solutions to effectively deploy PLM. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The objective of this paper is to provide and verify simplified models that predict the longitudinal stresses that develop in C-section purlins in uplift. The paper begins with the simple case of flexural stress: where the force has to be applied at the shear center, or the section braced in both flanges. Restrictions on load application point and restraint of the flanges are removed until arriving at the more complex problem of bending when movement of the tension flange alone is restricted, as commonly found in purlin-sheeting systems. Winter`s model for predicting the longitudinal stresses developed due to direct torsion is reviewed, verified, and then extended to cover the case of a bending member with tension flange restraint. The developed longitudinal stresses from flexure and restrained torsion are used to assess the elastic stability behavior of typical purlin-sheeting systems. Finally, strength predictions of typical C-section purlins are provided for existing AISI methods and a newly proposed extension to the direct strength method that employs the predicted longitudinal stress distributions within the strength prediction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
High urban transport energy consumption is directly influenced by transport energy dependence. Dramatic reductions in urban transport energy dependence or consumption are not yet being widely observed despite the variety of urban planning tools currently available. A new urban development framework is presented to tackle this issue that makes use of a recently developed and successfully trialed GIS-based tool, the Transport Energy Specification (TES). The TES was simulated on a neighborhood in Sao Carlos, Brazil. In the simulation, energy dependence was reduced by a factor of 8 through activity location or infrastructure modifications to the built environment.
Resumo:
This paper addresses the development of several alternative novel hybrid/multi-field variational formulations of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework of the complementary energy-based formulations, a Legendre transformation is used to introduce the complementary energy density in the variational statements as a function of stresses only. The corresponding variational principles are shown to feature stationarity within the framework of the boundary-value problem. Both weak and linearized weak forms of the principles are presented. The main features of the principles are highlighted, giving special emphasis to their relationships from both theoretical and computational standpoints. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Constructing highways in dense urban areas is always a challenge. In Sao Paulo Metropolitan Region, heavy truck traffic contributes to clog streets and expressways alike. As part of the traffic neither originates nor head to the region, a peripheral highway has been proposed to reduce traffic problems. This project called Rodoanel, is an expressway approximately 175 km long. The fact that the projected south and north sections would cross catchments that supply most of the metropolis water demand was strongly disputed and made the environmental permitting process particularly difficult. The agency in charge commissioned a strategic environmental assessment (SEA) of a revamped project, and called it the Rodoanel Programme. However, the SEA report failed to satisfactorily take account of significant strategic issues. Among these, the highway potential effect of inducing urban sprawl over water protection zones is the most critical issue, as it emerged later as a hurdle to project licensing. Conclusion is that, particularly where no agreed-upon framework for SEA exists, when vertical tiering with downstream project EIA is sought, then a careful scoping of strategic issues is more than necessary. If an agreement on `what is strategic` is not reached and not recognized by influential stakeholders, then the unsettled conflicts will be transferred to project EIA. In such a context, SEA will have added another loop to the usually long road to project approval. (c) 2008 Elsevier Inc. All rights reserved.