976 resultados para FREQUENCIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This brief paper provides a novel derivation of the known asymptotic values of three-dimensional (3D) added mass and damping of marine structures in waves. The derivation is based on the properties of the convolution terms in the Cummins's Equation as derived by Ogilvie. The new derivation is simple and no approximations or series expansions are made. The results follow directly from the relative degree and low-frequency asymptotic properties of the rational representation of the convolution terms in the frequency domain. As an application, the extrapolation of damping values at high frequencies for the computation of retardation functions is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a tandem pair of supersonic nozzles to produce clean samples of CH3OO radicals in cryogenic matrices. One hyperthermal nozzle decomposes azomethane (CH3NNCH3) to generate intense pulses of CH3 radicals, While the second nozzle alternately fires a burst Of O-2/Ar at the 20 K matrix. The CH3/O-2/20 K argon radical sandwich acts to produce target methylperoxyl radicals: CH3 + O-2 --> CH3OO. The absorption spectra of the radicals are monitored with a Fourier transform infrared spectrometer. We report 10 of the 12 fundamental infrared bands of the methylperoxyl radical CH3OO, (X) over tilde (2)A", in an argon matrix at 20 K. The experimental frequencies (cm(-1)) and polarizations follow: the a' modes are 3032, 2957, 1448, 1410, 1180, 1109, 90, 492, while the a" modes are 3024 and 1434. We cannot detect the asymmetric CH3 rocking mode, nu(11), nor the torsion, nu(12). The infrared spectra of (CH3OO)-O-18-O-18, (CH3OO)-C-13, and CD3OO have been measured as well in order to determine the isotopic shifts. The experimental frequencies, {nu}, for the methylperoxyl radicals are compared to harmonic frequencies, {omega}, resulting from a UB3LYP/6-311G(d,p) electronic structure calculation. Linear dichroism spectra were measured with photooriented radical samples in order to establish the experimental polarizations of most vibrational bands. The methylperoxyl radical matrix frequencies listed above are within +/-2% of the gas-phase vibrational frequencies. A final set of vibrational frequencies for the H radical, are recommended. See also http://ellison.colorado.edu/methylperoxyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replacement of endogenous genes by homologous recombination is rare in plants; the majority of genetic modifications are the result of transforming DNA molecules undergoing random genomic insertion by way of non-homologous recombination. Factors that affect chromatin remodeling and DNA repair are thought to have the potential to enhance the frequency of homologous recombination in plants. Conventional tools to study the frequencies of genetic recombination often rely on stable transformation-based approaches, with these systems being rarely capable of high-throughput or combinatorial analysis. We developed a series of vectors that use chemiluminescent (LUC and REN) reporter genes to assay the relative frequency of homologous and non-homologous recombination in plants. These transient assay vectors were used to screen 14 candidategenes for their effects on recombination frequencies in Nicotiana benthamiana plants. Over-expression of Arabidopsis genes with sequence similarity to SNM1 from yeast and XRCC3 from humans enhanced the frequency of non-homologous recombination when assayed using two different donor vectors. Transient N. benthamiana leaf systems were also used in an alternative assay for preliminary measurements of homologous recombination frequencies, which were found to be enhanced by over-expression of RAD52, MIM and RAD51 from yeast, as well as CHR24 from Arabidopsis. The findings for the assays described here are in line with previous studies that analyzed recombination frequencies using stable transformation. The assays we report have revealed functions in non-homologous recombination for the Arabidopsis SNM1 and XRCC3 genes, so the suppression of these genes' expression offers a potential means to enhance the gene targeting frequency in plants. Furthermore, our findings also indicate that plant gene targeting frequencies could be enhanced by over-expression of RAD52, MIM, CHR24, and RAD51 genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Hospital disaster resilience can be defined as a hospital’s ability to resist, absorb, and respond to the shock of disasters while maintaining critical functions, and then to recover to its original state or adapt to a new one. This study aims to explore the status of resilience among tertiary hospitals in Shandong Province, China. Methods: A stratified random sample (n = 50) was derived from tertiary A, tertiary B, and tertiary C hospitals in Shandong Province, and was surveyed by questionnaire. Data on hospital characteristics and 8 key domains of hospital resilience were collected and analysed. Variables were binary, and analysed using descriptive statistics such as frequencies. Results: A response rate of 82% (n = 41) was attained. Factor analysis identified four key factors from eight domains which appear to reflect the overall level of disaster resilience. These were hospital safety, disaster management mechanisms, disaster resources and disaster medical care capability. The survey demonstrated that in regard to hospital safety, 93% had syndromic surveillance systems for infectious diseases and 68% had evaluated their safety standards. In regard to disaster management mechanisms, all had general plans, while only 20% had specific plans for individual hazards. 49% had a public communication protocol and 43.9% attended the local coordination meetings. In regard to disaster resources, 75.6% and 87.5% stockpiled emergency drugs and materials respectively, while less than a third (30%) had a signed Memorandum of Understanding with other hospitals to share these resources. Finally in regard to medical care, 66% could dispatch an on-site medical rescue team, but only 5% had a ‘portable hospital’ function and 36.6% and 12% of the hospitals could surge their beds and staff capacity respectively. The average beds surge capacity within 1 day was 13%. Conclusions: This study validated the broad utility of a framework for understanding and measuring the level of hospital resilience. The survey demonstrated considerable variability in disaster resilience arrangements of tertiary hospitals in Shandong province, and the difference between tertiary A hospitals and tertiary B hospitals was also identified in essential areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma-based techniques offer many unique possibilities for the synthesis of various nanostructures both on the surface and in the plasma bulk. In contrast to the conventional chemical vapor deposition and some other techniques, plasma-based processes ensure high level of controllability, good quality of the produced nanomaterials, and reduced environmental risk. In this work, the authors briefly review the unique features of the plasma-enhanced chemical vapor deposition approaches, namely, the techniques based on inductively coupled, microwave, and arc discharges. Specifically, the authors consider the plasmas with the ion/electron density ranging from 10^10 to 10^14 cm−3, electron energy in the discharge up to ∼10 eV, and the operating pressure ranging from 1 to 10^4 Pa (up to 105 Pa for the atmospheric-pressure arc discharges). The operating frequencies of the discharges considered range from 460 kHz for the inductively coupled plasmas, and up to 2.45 GHz for the microwave plasmas. The features of the direct-current arc discharges are also examined. The authors also discuss the principles of operation of these systems, as well as the effects of the key plasma parameters on the conditions of nucleation and growth of the carbon nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these plasma systems are considered. Future trends in the development of these plasma-based systems are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term ‘plasmon’ was first coined in 1956 to describe collective electronic oscillations in solids which were very similar to electronic oscillations/surface waves in a plasma discharge (effectively the same formulae can be used to describe the frequencies of these physical phenomena). Surface waves originating in a plasma were initially considered to be just a tool for basic research, until they were successfully used for the generation of large-area plasmas for nanoscale materials synthesis and processing. To demonstrate the synergies between ‘plasmons’ and ‘plasmas’, these large-area plasmas can be used to make plasmonic nanostructures which functionally enhance a range of emerging devices. The incorporation of plasma-fabricated metal-based nanostructures into plasmonic devices is the missing link needed to bridge not only surface waves from traditional plasma physics and surface plasmons from optics, but also, more topically, macroscopic gaseous and nanoscale metal plasmas. This article first presents a brief review of surface waves and surface plasmons, then describe how these areas of research may be linked through Plasma Nanoscience showing, by closely looking at the essential physics as well as current and future applications, how everything old, is new, once again.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind speed measurement systems are sparse in the tropical regions of Australia. Given this, tropical cyclone wind speeds impacting communities are seldom measured and often only ‘guestimated’ by analysing the extent of damage to structures. In an attempt to overcome this dearth of data, a re-locatable network of anemometers to be deployed prior to tropical cyclone landfall is currently being developed. This paper discusses design criteria of the network’s tripods and tie down system, proposed deployment of the anemometers, instrumentation and data logging. Preliminary assessment of the anemometer response indicates a reliable system for measuring the spectral component of wind with frequencies of approximately 1 Hz. This system limitation highlights an important difference between the capabilities of modern instrumentation and that of the Dines anemometer (around 0.2 seconds) that was used to develop much of the design criteria within the Australian building code and wind loading standard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of charged particulates or dusts on surface wave produced microwave discharges is studied. The frequencies of the standing electromagnetic eigenmodes of large-area flat plasmas are calculated. The dusts absorb a significant amount of the plasma electrons and can lead to a modification of the electromagnetic field structure in the discharge by shifting the originally excited operating mode out of resonance. For certain given proportions of dusts, mode conversion is found to be possible. The power loss in the discharge is also increased because of dust-specific dissipations, leading to a decrease of the operating mode quality factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model of a large-area planar plasma producer based on surface wave (SW) propagation in a plasma-metal structure with a dielectric sheath is presented. The SW which produces and sustains the microwave gas discharge in the planar structure propagates along an external magnetic field and possesses an eigenfrequency within the range between electron cyclotron and electron plasma frequencies. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turning points for transitions between the electrostatic and electromagnetic discharge modes in low-frequency (∼ 500 kHz) inductively coupled plasmas have been identified and cross-referenced using time-resolved measurements of the plasma optical emission intensities, RF coil current, and ion saturation current collected by a single RF-compensated Langmuir probe. This enables one to monitor the variation of the plasma parameters, power transfer efficiency, which accompany the discharge hysteresis. The excitation conditions for the pure and hybrid modes in the plasma are considered, and the possibility of the TMmnl → TEm'n'l' transitions at higher frequencies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dispersion properties and topography of the fields of azimuthal surface wave (ASW) in a coaxial semiconductor structure with metal walls, placed in an external magnetic field, are investigated analytically and numerically. It is shown that an ASW phase-shifting device can be realized in the proposed structure. The conditions are indicated for which wave perturbations exist having frequencies that depend on the direction of phase change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of a microwave gas discharge produced and sustained by a surface wave (SW) propagating along a cylindrical metal antenna with a dielectric coating is studied. The SW that produces and sustains the microwave gas discharge propagates along an external magnetic field and has an eigenfrequency in the range between the electron cyclotron and electron plasma frequencies. The presence of a dielectric (vacuum) sheath region separating the antenna from the plasma is assumed. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.