971 resultados para FORCED SWIMMING TEST
Resumo:
To enhance the utilization of the wood, the sawmills are forced to place more emphasis on planning to master the whole production chain from the forest to the end product. One significant obstacle to integrating the forest-sawmill-market production chain is the lack of appropriate information about forest stands. Since the wood procurement point of view in forest planning systems has been almost totally disregarded there has been a great need to develop an easy and efficient pre-harvest measurement method, allowing separate measurement of stands prior to harvesting. The main purpose of this study was to develop a measurement method for pine stands which forest managers could use in describing the properties of the standing trees for sawing production planning. Study materials were collected from ten Scots pine stands (Pinus sylvestris) located in North Häme and South Pohjanmaa, in southern Finland. The data comprise test sawing data on 314 pine stems, dbh and height measures of all trees and measures of the quality parameters of pine sawlog stems in all ten study stands as well as the locations of all trees in six stands. The study was divided into four sub-studies which deal with pine quality prediction, construction of diameter and dead branch height distributions, sampling designs and applying height and crown height models. The final proposal for the pre-harvest measurement method is a synthesis of the individual sub-studies. Quality analysis resulted in choosing dbh, distance from stump height to the first dead branch (dead branch height), crown height and tree height as the most appropriate quality characteristics of Scots pine. Dbh and dead branch height are measured from each pine sample tree while height and crown height are derived from dbh measures by aid of mixed height and crown height models. Pine and spruce diameter distribution as well as dead branch height distribution are most effectively predicted by the kernel function. Roughly 25 sample trees seems to be appropriate in pure pine stands. In mixed stands the number of sample trees needs to be increased in proportion to the intensity of pines in order to attain the same level of accuracy.
Resumo:
Purpose - This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART-II) wind tunnel test data. Design/methodology/approach - Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models. Findings - Good correlation between analysis and HART-II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART-II result and other high-fidelity aeroelastic code predictions for flap and torsion mode. For the lead-lag response, the present analysis prediction is somewhat better than other aeroelastic analyses. Research limitations/implications - Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead-lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results. Practical implications - Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time-consuming and expensive wind tunnel tests during the initial stage of the design process. Originality/value - While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART-II wind tunnel experiments.
Resumo:
A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Analisi contrastiva delle modalità di traduzione in finnico dei Tempi verbali e delle perifrasi aspettuali dell italiano (Italian Philology) The topic of this research is a contrastive study of tenses and aspect in Italian and in Finnish. The study aims to develop a research method for analyzing translations and comparable texts (non-translation) written in a target language. Thus, the analysis is based on empirical data consisting of translations of novels from Italian to Finnish and vice versa. In addition to this, for the section devoted to solutions adopted in Finnish for translating the Italian tenses Perfetto Semplice and Perfetto Composto, 39 Finnish native speakers were asked to answer questions concerning the choice of Perfekti and Imperfekti in Finnish. The responses given by the Finnish informants were compared to the choices made by translators in the target language, and in this way it was possible both to benefit from the motivation provided by native speakers to explain the selection of a tense (Imperfekti/Perfekti) in a specific context compared with the Italian formal equivalents (Perfetto Composto/Perfetto Semplice), and to define the specific features of the Finnish verb tenses. The research aims to develop a qualitative method for the analysis of formal equivalents and translational changes ( shifts ). Although, as the choice of Italian and Finnish progressive forms is optional and related to speaker preferences, besides the qualitative analysis, I also considered it necessary to operate a quantitative one in order to find out whether the two items share the same degree of correspondence in frequency of use. In this study I explain translation choices in light of cognitive grammar, suggesting that particular translation relationships derive from so-called construal operations. I use the concepts of cognitive linguistics not only to analyze the convergences and divergences of the two aspectual systems, but also to redefine some general procedures related to the phenomenon of translation. For the practical analysis of the corpus were for the most part employed theoretical categories developed in a framework proposed by Pier Marco Bertinetto. Following this approach, the notions of aspect (the morphologic or morphosyntactic, subjective level) and actionality (the lexical aspect or objective level, traditionally Aktionsart) are carefully distinguished. This also allowed me to test the applicability of these distinctions to two languages typologically different from each other. The data allowed both the analysis of the semantic and pragmatic features that determine tense and aspect choices in these two languages, and to discover the correspondences between the two language systems and the strategies that translators are forced to resort to in particular situations. The research provides not only a detailed and analytically argued inventory about possible solutions for translating Italian tenses and aspectual devices in Finnish that could be of pedagogical relevance, but also new contributions about the specific uses of time-aspectual devices in the two languages in question.
Resumo:
Conventional Random access scan (RAS) for testing has lower test application time, low power dissipation, and low test data volume compared to standard serial scan chain based design In this paper, we present two cluster based techniques, namely, Serial Input Random Access Scan and Variable Word Length Random Access Scan to reduce test application time even further by exploiting the parallelism among the clusters and performing write operations on multiple bits Experimental results on benchmarks circuits show on an average 2-3 times speed up in test write time and average 60% reduction in write test data volume
Resumo:
A critical test has been presented to establish the nature of the kinetic pathways for the decomposition of Fe-12 at.% Si alloy below the metastable tricritical point. The results, based on the measurements of saturation magnetization, establish that a congruent ordering from B2 --> D0(3) precedes the development of a B2 + D0(3) two-phase field, consistent with the predictions in 1976 of Allen and Cahn.
Resumo:
A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.
Resumo:
The no-hiding theorem says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the Universe with no information being hidden in the correlation between these two subsystems. Here, we report an experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance. We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits.
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Random Access Scan, which addresses individual flip-flops in a design using a memory array like row and column decoder architecture, has recently attracted widespread attention, due to its potential for lower test application time, test data volume and test power dissipation when compared to traditional Serial Scan. This is because typically only a very limited number of random ``care'' bits in a test response need be modified to create the next test vector. Unlike traditional scan, most flip-flops need not be updated. Test application efficiency can be further improved by organizing the access by word instead of by bit. In this paper we present a new decoder structure that takes advantage of basis vectors and linear algebra to further significantly optimize test application in RAS by performing the write operations on multiple bits consecutively. Simulations performed on benchmark circuits show an average of 2-3 times speed up in test write time compared to conventional RAS.
Resumo:
In the area of testing communication systems, the interfaces between systems to be tested and their testers have great impact on test generation and fault detectability. Several types of such interfaces have been standardized by the International Standardization Organization (ISO). A general distributed test architecture, containing distributed interfaces, has been presented in the literature for testing distributed systems based on the Open Distributing Processing (ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributed test architecture. We study in this paper the issue of test selection with respect to such an test architecture. In particular, we consider communication systems that can be modeled by finite state machines with several distributed interfaces, called ports. A test generation method is developed for generating test sequences for such finite state machines, which is based on the idea of synchronizable test sequences. Starting from the initial effort by Sarikaya, a certain amount of work has been done for generating test sequences for finite state machines with respect to the ISO distributed test architecture, all based on the idea of modifying existing test generation methods to generate synchronizable test sequences. However, none studies the fault coverage provided by their methods. We investigate the issue of fault coverage and point out a fact that the methods given in the literature for the distributed test architecture cannot ensure the same fault coverage as the corresponding original testing methods. We also study the limitation of fault detectability in the distributed test architecture.
Resumo:
Direct use of experimental eigenvalues of the vibrational secular equation on to the ab initio predicted eigenvector space is suggested as a means of obtaining a reliable set of intramolecular force constants. This method which we have termed RECOVES (recovery in the eigenvector space) is computationally simple and free from arbitrariness. The RECOVES force constants, by definition, reproduce the experimental vibrational frequencies of the parent molecule exactly. The ab initio calculations were carried out for ethylene as a test molecule and the force constants obtained by the present procedure also correctly predict the vibrational frequencies of the deuterated species. The RECOVES force constants for ethylene are compared with those obtained by using the SQM procedure.