993 resultados para FOLDED-GASTRULATION
Resumo:
We develop a heuristic model for chaperonin-facilitated protein folding, the iterative annealing mechanism, based on theoretical descriptions of "rugged" conformational free energy landscapes for protein folding, and on experimental evidence that (i) folding proceeds by a nucleation mechanism whereby correct and incorrect nucleation lead to fast and slow folding kinetics, respectively, and (ii) chaperonins optimize the rate and yield of protein folding by an active ATP-dependent process. The chaperonins GroEL and GroES catalyze the folding of ribulose bisphosphate carboxylase at a rate proportional to the GroEL concentration. Kinetically trapped folding-incompetent conformers of ribulose bisphosphate carboxylase are converted to the native state in a reaction involving multiple rounds of quantized ATP hydrolysis by GroEL. We propose that chaperonins optimize protein folding by an iterative annealing mechanism; they repeatedly bind kinetically trapped conformers, randomly disrupt their structure, and release them in less folded states, allowing substrate proteins multiple opportunities to find pathways leading to the most thermodynamically stable state. By this mechanism, chaperonins greatly expand the range of environmental conditions in which folding to the native state is possible. We suggest that the development of this device for optimizing protein folding was an early and significant evolutionary event.
Resumo:
In the MYL mutant of the Arc repressor dimer, sets of partially buried salt-bridge and hydrogen-bond interactions mediated by Arg-31, Glu-36, and Arg-40 in each subunit are replaced by hydrophobic interactions between Met-31, Tyr-36, and Leu-40. The MYL refolding/dimerization reaction differs from that of wild type in being 10- to 1250-fold faster, having an earlier transition state, and depending upon viscosity but not ionic strength. Formation of the wild-type salt bridges in a hydrophobic environment clearly imposes a kinetic barrier to folding, which can be lowered by high salt concentrations. The changes in the position of the transition state and viscosity dependence can be explained if denatured monomers interact to form a partially folded dimeric intermediate, which then continues folding to form the native dimer. The second step is postulated to be rate limiting for wild type. Replacing the salt bridge with hydrophobic interactions lowers this barrier for MYL. This makes the first kinetic barrier rate limiting for MYL refolding and creates a downhill free-energy landscape in which most molecules which reach the intermediate state continue to form native dimers.
Resumo:
Potential errors in decoding genetic information are corrected by tRNA-dependent amino acid recognition processes manifested through editing reactions. One example is the rejection of difficult-to-discriminate misactivated amino acids by tRNA synthetases through hydrolytic reactions. Although several crystal structures of tRNA synthetases and synthetase-tRNA complexes exist, none of them have provided insight into the editing reactions. Other work suggested that editing required active amino acid acceptor hydroxyl groups at the 3' end of a tRNA effector. We describe here the isolation of a DNA aptamer that specifically induced hydrolysis of a misactivated amino acid bound to a tRNA synthetase. The aptamer had no effect on the stability of the correctly activated amino acid and was almost as efficient as the tRNA for inducing editing activity. The aptamer has no sequence similarity to that of the tRNA effector and cannot be folded into a tRNA-like structure. These and additional data show that active acceptor hydroxyl groups in a tRNA effector and a tRNA-like structure are not essential for editing. Thus, specific bases in a nucleic acid effector trigger the editing response.
Resumo:
Synthesis of a 33-residue, capped leucine zipper analogous to that in GCN4 is reported. Histidine and arginine residues are mutated to lysine to reduce the unfolding temperature. CD and ultracentrifugation studies indicate that the molecule is a two-stranded coiled coil under benign conditions. Versions of the same peptide are made with 99% 13Calpha at selected sites. One-dimensional 13C NMR spectra are assigned by inspection and used to study thermal unfolding equilibria over the entire transition from 8 to 73 degrees C. Spectra at the temperature extremes establish the approximate chemical shifts for folded and unfolded forms at each labeled site. Resonances for each amino acid appear at both locations at intermediate T, indicating that folded and unfolded forms interconvert slowly (> >2 ms) on the NMR time scale. Moreover, near room temperature, the structured form's resonance is double at several, but not all, sites, indicating at least two slowly interconverting, structured, local conformational substates. Analysis of the dynamics is possible. For example, near room temperature at the Val-9, Ala-24, and Gly-31 positions, the equilibrium constant for interconversion of the two structured forms is near unity and the time scale is > or= 10-20 ms.
Resumo:
Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.
Resumo:
In the amniotes, two unique layers of cells, the epiblast and the hypoblast, constitute the embryo at the blastula stage. All the tissues of the adult will derive from the epiblast, whereas hypoblast cells will form extraembryonic yolk sac endoderm. During gastrulation, the endoderm and the mesoderm of the embryo arise from the primitive streak, which is an epiblast structure through which cells enter the interior. Previous investigations by others have led to the conclusion that the avian hypoblast, when rotated with regard to the epiblast, has inductive properties that can change the fate of competent cells in the epiblast to form an ectopic embryonic axis. Thus, it has been suggested that the hypoblast normally induces the epiblast to form a primitive streak at a specific locus. In the work reported here, an attempt was made to reexamine the issue of induction. In contrast to previous reports, it was found that the rotated hypoblast of the chicken embryo does not initiate formation of an ectopic axis in the epiblast. The embryonic axis always initiates and develops according to the basic polarity of the epiblast layer. These results provoke a reinterpretation of the issues of mesoderm induction and primitive streak initiation in the avian embryo.
Resumo:
A simple model of the kinetics of protein folding is presented. The reaction coordinate is the "correctness" of a configuration compared with the native state. The model has a gap in the energy spectrum, a large configurational entropy, a free energy barrier between folded and partially folded states, and a good thermodynamic folding transition. Folding kinetics is described by a master equation. The folding time is estimated by means of a local thermodynamic equilibrium assumption and then is calculated both numerically and analytically by solving the master equation. The folding time has a maximum near the folding transition temperature and can have a minimum at a lower temperature.
Resumo:
Folding of lysozyme from hen egg white was investigated by using interrupted refolding experiments. This method makes use of a high energy barrier between the native state and transient folding intermediates, and, in contrast to conventional optical techniques, it enables one to specifically monitor the amount of native molecules during protein folding. The results show that under strongly native conditions lysozyme can refold on parallel pathways. The major part of the lysozyme molecules (86%) refold on a slow kinetic pathway with well-populated partially folded states. Additionally, 14% of the molecules fold faster. The rate constant of formation of native molecules on the fast pathway corresponds well to the rate constant expected for folding to occur by a two-state process without any detectable intermediates. The results suggest that formation of the native state for the major fraction of lysozyme molecules is retarded compared with the direct folding process. Partially structured intermediates that transiently populate seem to be kinetically trapped in a conformation that can only slowly reach the native structure.
Resumo:
When expressed as part of a glutathione S-transferase fusion protein the NH2-terminal domain of the lymphocyte cell adhesion molecule CD2 is shown to adopt two different folds. The immunoglobulin superfamily structure of the major (85%) monomeric component has previously been determined by both x-ray crystallography and NMR spectroscopy. We now describe the structure of a second, dimeric, form present in about 15% of recombinant CD2 molecules. After denaturation and refolding in the absence of the fusion partner, dimeric CD2 is converted to monomer, illustrating that the dimeric form represents a metastable folded state. The crystal structure of this dimeric form, refined to 2.0-A resolution, reveals two domains with overall similarity to the IgSF fold found in the monomer. However, in the dimer each domain is formed by the intercalation of two polypeptide chains. Hence each domain represents a distinct folding unit that can assemble in two different ways. In the dimer the two domains fold around a hydrophilic interface believed to mimic the cell adhesion interaction at the cell surface, and the formation of dimer can be regulated by mutating single residues at this interface. This unusual misfolded form of the protein, which appears to result from inter- rather than intramolecular interactions being favored by an intermediate structure formed during the folding process, illustrates that evolution of protein oligomers is possible from the sequence for a single protein domain.
Resumo:
To analyze cotranslational folding of influenza hemagglutinin in the endoplasmic reticulum of live cells, we used short pulses of radiolabeling followed by immunoprecipitation and analysis with a two-dimensional SDS/polyacrylamide gel system which was nonreducing in the first dimension and reducing in the second. It separated nascent glycopolypeptides of different length and oxidation state. Evidence was obtained for cotranslational disulfide formation, generation of conformational epitopes, N-linked glycosylation, and oligosaccharide-dependent binding of calnexin, a membrane-bound chaperone that binds to incompletely folded glycoproteins via partially glucose-trimmed oligosaccharides. When glycosylation or oligosaccharide trimming was inhibited, the folding pathway was perturbed, suggesting a role for N-linked oligosaccharides and calnexin during translation of hemagglutinin.
Resumo:
Secretion of IpaB, IpaC, and IpaD proteins of Shigella flexneri, essential for the invasion of epithelial cells, requires a number of proteins encoded by the spa and mxi loci on the large plasmid. Introduction of dsbA::Tn5 into S.flexneri from Escherichia coli K-12 reduced invasiveness, which resulted from a decrease in the capacity to release IpaB, IpaC, and IpaD proteins into the external medium. Examination of the surface-presented Ipa proteins of the dsbA mutant, however, revealed Ipa proteins at levels similar to those on wild-type cells. Since the defective phenotype was similar to that of the spa32 mutant of S. flexneri and the Spa32 sequence possessed two Cys residues, the effect of dsbA mutation of the folding structure of Spa32 under reducing conditions and on the surface expression of Spa32 was investigated. The results indicated that Spa32 was a disulfide-containing protein whose correctly folded structure was required for its presentation on the outer membrane. Indeed, replacing either one of the two Cys residues in Spa32 with Ser by site-directed mutagenesis reduced its capacity to release Ipa proteins into the external medium and led to the accumulation of Spa32 protein in the periplasm. These results indicated that the DsbA protein performs an essential function during the invasion of mammalian cells, by facilitating transport of the Spa32 protein across the outer membrane.
Resumo:
Unlike conventional membrane proteins of the secretory pathway, proteins anchored to the cytoplasmic surface of membranes by hydrophobic sequences near their C termini follow a posttranslational, signal recognition particle-independent insertion pathway. Many such C-terminally-anchored proteins have restricted intracellular locations, but it is not known whether these proteins are targeted directly to the membranes in which they will ultimately reside. Here we have analyzed the intracellular sorting of the Golgi protein giantin, which consists of a rod-shaped 376-kDa cytoplasmic domain followed by a hydrophobic C-terminal anchor sequence. Unexpectedly, we find that giantin behaves like a conventional secretory protein in that it inserts into the endoplasmic reticulum (ER) and then is transported to the Golgi. A deletion mutant lacking a portion of the cytoplasmic domain adjacent to the membrane anchor still inserts into the ER but fails to reach the Golgi, even though this mutant has a stable folded structure. These findings suggest that the localization of a C-terminally-anchored Golgi protein involves at least three steps: insertion into the ER membrane, controlled incorporation into transport vesicles, and retention within the Golgi.
Resumo:
Plakoglobin interacts with both classical and desmosomal cadherins. It is closely related to Drosophila aramadillo (arm) gene product; arm acts in the wingless (wg)-signaling pathway to establish segment polarity. In Xenopus, homologs of wg--i.e., wnts, can produce anterior axis duplications by inducing dorsal mesoderm. Studies in Drosophila suggest that wnt acts by increasing the level of cytoplasmic armadillo protein (arm). To test whether simply increasing the level of plakoglobin mimics the effects of exogenous wnts in Xenopus, we injected fertilized eggs with RNA encoding an epitope-tagged form of plakoglobin; this induced both early radial gastrulation and anterior axis duplication. Exogenous plakoglobin accumulates in the nuclei of embryonic cells. Plakoglobin binds to the tail domain of the desmosomal cadherin desmoglein 1. When RNA encoding the tail domain of desmoglein was coinjected with plakoglobin RNA, both the dorsalizing effect and nuclear accumulation of plakoglobin were suppressed. Mutational analysis indicates that the central arm repeat region of plakoglobin is sufficient to induce axis duplication and that this polypeptide accumulates in the nuclei of embryonic cells. These data show that increased plakoglobin levels can, by themselves, generate the intracellular signals involved in the specification of dorsal mesoderm.
Resumo:
Receptores purinérgicos e canais de cálcio voltagem-dependentes estão envolvidos em diversos processos biológicos como na gastrulação, durante o desenvolvimento embrionário, e na diferenciação neural. Quando ativados, canais de cálcio voltagem-dependentes e receptores purinérgicos do tipo P2, ativados por nucleotídeos, desencadeiam transientes de cálcio intracelulares controlando diversos processos biológicos. Neste trabalho, nós estudamos a participação de canais de cálcio voltagem-dependentes e receptores do tipo P2 na geração de transientes de cálcio espontâneos e sua regulação na expressão de fatores de transcrição relacionados com a neurogênese utilizando como modelo células tronco (CTE) induzidas à diferenciação em células tronco neurais (NSC) com ácido retinóico. Descrevemos que CTE indiferenciadas podem ter a proliferação acelerada pela ativação de receptores P2X7, enquanto que a expressão e a atividade desse receptor precisam ser inibidas para o progresso da diferenciação em neuroblasto. Além disso, ao longo da diferenciação neural, por análise em tempo real dos níveis de cálcio intracelular livre identificamos 3 padrões de oscilações espontâneas de cálcio (onda, pico e unique), e mostramos que ondas e picos tiveram a frequência e amplitude aumentadas conforme o andamento da diferenciação. Células tratadas com o inibidor do receptor de inositol 1,4,5-trifosfato (IP3R), Xestospongin C, apresentaram picos mas não ondas, indicando que ondas dependem exclusivamente de cálcio oriundo do retículo endoplasmático pela ativação de IP3R. NSC de telencéfalo de embrião de camundongos transgênicos ou pré-diferenciadas de CTE tratadas com Bz-ATP, o agonista do receptor P2X7, e com 2SUTP, agonista de P2Y2 e P2Y4, aumentaram a frequência e a amplitude das oscilações espontâneas de cálcio do tipo pico. Dados, obtidos por microscopia de luminescência, da expressão em tempo real de gene repórter luciferase fusionado à Mash1 e Ngn2 revelou que a ativação dos receptores P2Y2/P2Y4 aumentou a expressão estável de Mash1 enquanto que ativação do receptor P2X7 levou ao aumento de Ngn2. Além disso, células na presença do quelante de cálcio extracelular (EGTA) ou do depletor dos estoques intracelulares de cálcio do retículo endoplasmático (thapsigargin) apresentaram redução na expressão de Mash1 e Ngn2, indicando que ambos são regulados pela sinalização de cálcio. A investigação dos canais de cálcio voltagem-dependentes demonstrou que o influxo de cálcio gerado por despolarização da membrana de NSC diferenciadas de CTE é decorrente da ativação de canais de cálcio voltagem-dependentes do tipo L. Além disso, esse influxo pode controlar o destino celular por estabilizar expressão de Mash1 e induzir a diferenciação neuronal por fosforilação e translocação do fator de transcrição CREB. Esses dados sugerem que os receptores P2X7, P2Y2, P2Y4 e canais de cálcio voltagem-dependentes do tipo L podem modular as oscilações espontâneas de cálcio durante a diferenciação neural e consequentemente alteram o padrão de expressão de Mash1 e Ngn2 favorecendo a decisão do destino celular neuronal.
Resumo:
Context. 4U 1538−52, an absorbed high mass X-ray binary with an orbital period of ~3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Several models have been proposed to explain the accretion at different orbital phases by a spherically symmetric stellar wind from the companion. Aims. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. In particular, we study the folded light curve and the changes in the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system. Methods. We used all the observations made from the Gas Slit Camera on board MAXI of 4U 1538−52 covering many orbits continuously. We obtained the good interval times for all orbital phase ranges, which were the input for extracting our data. We estimated the orbital period of the system and then folded the light curves, and we fitted the X-ray spectra with the same model for every orbital phase spectrum. We also extracted the averaged spectrum of all the MAXI data available. Results. The MAXI spectra in the 2–20 keV energy range were fitted with an absorbed Comptonisation of cool photons on hot electrons. We found a strong orbital dependence of the absorption column density but neither the fluorescence iron emission line nor low energy excess were needed to fit the MAXI spectra. The variation in the spectral parameters over the binary orbit were used to examine the mode of accretion onto the neutron star in 4U 1538−52. We deduce a best value of Ṁ/v∞ = 0.65 × 10-9M⊙ yr-1/ (km s-1) for QV Nor.