948 resultados para FLOW OF WATER
Resumo:
The mining process promotes land modification and complete landscape alteration. Those alterations in the surface are shown more obviously in the aesthetical aspect as the visual elements of form, texture, climbs, complexity and color which composes the landscape. As a consequence, mining has impacts on the topography, in the soil, in the vegetation and in the area's drainage, with a direct influence on the enterprise. A quite common problem in the recovery of degraded areas in mineral exploration is the compaction of the soil due to the intense traffic of machines and earth movement. The most common problem of the compaction of a degraded surface is an increase of the mechanical resistance to the penetration of plant roots, a reduction of the aeration, an alteration of the flow of water and heat, also in the availability of water and nutrients. Thus, the present work had the basic objective of diagnosing the compaction of an area degraded by mining in a spacial way, through the mechanical resistance and the penetration, to guide the future subsoiling in the area requiring recovery. Through the studies, it was concluded that the krigagem method in agreement with the space variation allows the division of the area under study into sub areas facilitating a future work to reduce costs and unnecessary interference to the atmosphere. The method was shown to be quite appropriate and it can be used in the diagnosis of compaction in a degraded area by mining, foreseeing the subsoiling requirement.
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11. 1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although they are of economic importance, there have been few cytogenetic studies of the Gerridae (Heteroptera) in Brazil. We examined spermatogenesis (meiosis and spermiogenesis) and nucleolar behavior in three species of the family Gerridae. Brachymetra albinerva and Halobatopsis platensis were found to have a chromosome complement of 2n = 25 (24A + X0) and Cylindrostethus palmaris 2n = 29 (28A + X0) chromosomes. Fifteen individuals of these species were collected from the reservoir of São José do Rio Preto, SP, using screens and were transported in pots containing water to the laboratory, where cytogenetic preparations were made. The polyploidy nuclei are formed by several heteropyknotic regions; cells in meiotic prophase have a heteropyknotic region that is probably the sex chromosome, and the chromosomes from chiasmata. The spermatids are rounded and have a heteropyknotic region at the periphery of the nucleus; the sperm head is small, with a long tail. Silver impregnation of meiotic cells showed one or more disorganized bodies around the perichromosomal sheath. The round spermatids had two bodies next to each other, but these were elongated; one of the bodies remained in the head and the other migrated to the initial part of the tail at the end of spermagenesis, when the staining was no longer evident. The meiotic cells appear during spermatogenesis and have very similar silver-impregnation patterns in different species of Heteroptera.
Resumo:
Includes bibliography
Resumo:
In this work, is presented an alternative and non conventional technique for evaluate the water amount present in the hydrated ethanol used as automotive fuel. The standard technique used in this kind of measure is the use of densimeter. The proposal of this work is based on the measure of the linear attenuation coefficient of hydrated ethanol, using the gamma-ray attenuation technique. The water amount, in volume, can be determined knowing the linear attenuation coefficient of hydrated ethanol. Samples of hydrated ethanol, collected at fuel stations, located in Sorocaba, SP, Brazil, were analyzed and the results showed the feasibility of the technique. © 2011 American Institute of Physics.
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.
Resumo:
The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.