959 resultados para Experimental animal models
Resumo:
The success of highly active anti-retroviral therapy (HAART) has inspired new concepts for eliminating HIV from infected individuals. A major obstacle is the persistence of long-lived reservoirs of latently infected cells that might become activated at some time after cessation of therapy. We propose that, in the context of treatment strategies to deliberately activate and eliminate these reservoirs, hybrid toxins targeted to kill HIV-infected cells be reconsidered in combination with HAART. Such combinations might also prove valuable in protocols aimed at preventing mother-to-child transmission and establishment of infection immediately after exposure to HIV. We suggest experimental approaches in vitro and in animal models to test various issues related to safety and efficacy of this concept.
Resumo:
It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.
Resumo:
Huntington disease is a dominantly inherited, untreatable neurological disorder featuring a progressive loss of striatal output neurons that results in dyskinesia, cognitive decline, and, ultimately, death. Neurotrophic factors have recently been shown to be protective in several animal models of neurodegenerative disease, raising the possibility that such substances might also sustain the survival of compromised striatal output neurons. We determined whether intracerebral administration of brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, or ciliary neurotrophic factor could protect striatal output neurons in a rodent model of Huntington disease. Whereas treatment with brain-derived neurotrophic factor, nerve growth factor, or neurotrophin-3 provided no protection of striatal output neurons from death induced by intrastriatal injection of quinolinic acid, an N-methyl-D-aspartate glutamate receptor agonist, treatment with ciliary neurotrophic factor afforded marked protection against this neurodegenerative insult.
Resumo:
La sclérodermie (SSc) est une maladie rare affectant les personnes génétiquement prédisposées d’une réponse immunitaire défectueuse. Malgré les derniers avancements et développements dans le domaine, l’étiologie et la pathogénèse de la maladie demeurent peu comprises. Par ailleurs, il y a un ralentissement dans la compréhension de cette maladie à cause du manque de modèle animal représentatif de la SSc humaine. Malgré plusieurs lacunes, les souris traitées avec la bléomycine ou portant des modifications génétiques (TSK-1) sont très utilisées dans les études précliniques de la SSc mais elles ne présentent pas toutes les caractéristiques de cette maladie. Pour contribuer à la recherche sur la SSc, la stagiaire postdoctorale Dre Heena Mehta a développé dans le laboratoire du Dre Sarfati en collaboration avec le Dr Senécal, un modèle de souris expérimental induit par l’immunisation de cellules dendritiques (DCs) chargées de peptides de la protéine topoisomérase I (TOPOIA et TOPOIB). Dans le but de caractériser ce modèle murin et d’établir un profil immunitaire, j’ai concentré mes analyses principalement sur les caractéristiques de la SSc telles que la fibrose, l’inflammation, l’hyper-γ-globulinémie polyclonale, la vasculopathie ainsi que de l’expression de cytokines. Brièvement, l’immunisation de souris avec les DCs chargées avec la topoisomérase I (TOPOI) a induit l’inflammation pulmonaire et cutanée, en plus de la fibrose sous forme diffuse (dcSSc). Les souris présentaient également des symptômes de la vasculopathie ainsi que des taux élevés d’anticorps polyclonaux. Les résultats démontraient que les peptides TOPOIA étaient efficaces dans l’induction de la fibrose et de la réponse inflammatoire alors que les peptides TOPOIB étaient surtout impliqués dans la fibrose cutanée. En plus de nos résultats, les observations préliminaires sur le profil de cytokines tissulaires suggéraient que ce modèle pourrait remplacer ou complémenter les autres modèles animaux de SSc.
Resumo:
Neospora caninum is a leading cause of abortion in cattle, and is thus an important veterinary health problem of high economic significance. Vaccination has been considered a viable strategy to prevent bovine neosporosis. Different approaches have been investigated, and to date the most promising results have been achieved with live-attenuated vaccines. Subunit vaccines have also been studied, and most of them represented components that are functionally involved in (i) the physical interaction between the parasite and its host cell during invasion or (ii) tachyzoite-to-bradyzoite stage conversion. Drugs have been considered as an option to limit the effects of vertical transmission of N. caninum. Promising results with a small panel of compounds in small laboratory animal models indicate the potential value of a chemotherapeutical approach for the prevention of neosporosis in ruminants. For both, vaccines and drugs, the key for success in preventing vertical transmission lies in the application of bioactive compounds that limit parasite proliferation and dissemination, without endangering the developing fetus not only during an exogenous acute infection but also during recrudescence of a chronic infection. In this review, the current status of vaccine and drug development is presented and novel strategies against neosporosis are discussed.
Resumo:
Since the discovery in the 1970s that dendritic abnormalities in cortical pyramidal neurons are the most consistent pathologic correlate of mental retardation, research has focused on how dendritic alterations are related to reduced intellectual ability. Due in part to obvious ethical problems and in part to the lack of fruitful methods to study neuronal circuitry in the human cortex, there is little data about the microanatomical contribution to mental retardation. The recent identification of the genetic bases of some mental retardation associated alterations, coupled with the technology to create transgenic animal models and the introduction of powerful sophisticated tools in the field of microanatomy, has led to a growth in the studies of the alterations of pyramidal cell morphology in these disorders. Studies of individuals with Down syndrome, the most frequent genetic disorder leading to mental retardation, allow the analysis of the relationships between cognition, genotype and brain microanatomy. In Down syndrome the crucial question is to define the mechanisms by which an excess of normal gene products, in interaction with the environment, directs and constrains neural maturation, and how this abnormal development translates into cognition and behaviour. In the present article we discuss mainly Down syndrome-associated dendritic abnormalities and plasticity and the role of animal models in these studies. We believe that through the further development of such approaches, the study of the microanatomical substrates of mental retardation will contribute significantly to our understanding of the mechanisms underlying human brain disorders associated with mental retardation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Inactivity is associated with endothelial dysfunction and the development of cardiovascular disease. Exercise training has a favourable effect in the management of hypertension, heart failure and ischaemic heart disease. These beneficial effects are probably mediated through improvements of vascular function and, in this issue of Clinical Science, Hagg and co-authors propose a coronary artery effect. The use of a Doppler technique for non-invasive assessment of coronary flow reserve in a small animal model is an exciting aspect of this study. If feasible in the hands of other investigators, the availability of sequential coronary flow measurements in animal models may help improve our understanding of the mechanisms of disorders of the coronary circulation.
Resumo:
A comparison of a constant (continuous delivery of 4% FiO(2)) and a variable (initial 5% FiO(2) with adjustments to induce low amplitude EEG (LAEEG) and hypotension) hypoxic/ischemic insult was performed to determine which insult was more effective in producing a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. We also examined which physiological responses contributed to this outcome. Thirty-nine 1-day-old piglets were subjected to either a constant hypoxic/ischemic insult of 30- to 37-min duration or a variable hypoxic/ischemic insult of 30-min low peak amplitude EEG (LAEEG < 5 mu V) including 10 min of low mean arterial blood pressure (MABP < 70% of baseline). Control animals (n = 6) received 21% FiO(2) for the duration of the experiment. At 72 h, the piglets were euthanased, their brains removed and fixed in 4% paraformaldehyde and assessed for hypoxic/ischemic injury by histological analysis. Based on neuropathology scores, piglets were grouped as undamaged or damaged; piglets that did not survive to 72 h were grouped separately as dead. The variable insult resulted in a greater number of piglets with neuropathological damage (undamaged = 12.5%, damaged = 68.75%, dead = 18.75%) while the constant insult resulted in a large proportion of undamaged piglets (undamaged = 50%, damaged = 22.2%, dead = 27.8%). A hypoxic insult varied to maintain peak amplitude EEG < 5 mu V results in a greater number of survivors with a consistent degree of neuropathological damage than a constant hypoxic insult. Physiological variables MABP, LAEEG, pH and arterial base excess were found to be significantly associated with neuropathological outcome. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Complement factor 5a (C5a) is formed upon complement system activation in response to infection, injury or disease. Whilst C5a is a potent mediator of immune and inflammatory processes, excessive production or inadequate regulation of C5a has been implicated in the pathogenesis of numerous immuno-inflammatory diseases, predominantly through experimental studies utilising animal models of disease. Both acute and chronic conditions may benefit from C5a inhibition, including rheumatoid arthritis, inflammatory bowel disease, asthma, psoriasis, haemorrhagic shock and neurodegenerative conditions. The potentially broad clinical application for treatments that inhibit the activity of C5a at C5a receptors and the large global market for anti-inflammatory therapeutics have made C5a and the C5a receptor attractive targets for academic and commercial drug development programmes. in the past 5 years, interest in C5a as a drug target has grown substantially, and this activity has resulted in a collection of patents and scientific papers reporting novel C5a and C5a receptor inhibitors and antagonists, and generated a secondary stream of patent applications broadly claiming the use of C5/C5a inhibitors as a method of treating various immune and inflammatory conditions. This paper will review the physiology and pathophysiology of C5a and discuss the development of C5a and C5a receptor inhibitors in light of the recent scientific and patent literature.
Resumo:
Experiments to design physical activity programs that optimize their osteogenic potential are difficult to accomplish in humans. The aim of this article is to review the contributions that animal studies have made to knowledge of the loading conditions that are osteogenic to the skeleton during growth, as well as to consider to what extent animal studies fail to provide valid models of physical activity and skeletal maturation. Controlled loading studies demonstrate that static loads are ineffective, and that bone formation is threshold driven and dependent on strain rate, amplitude, and duration of loading. Only a few loading cycles per session are required, and distributed bouts are more osteogenic than sessions of long duration. Finally, animal models fail to inform us of the most appropriate ways to account for the variations in biological maturation that occur in our studies of children and adolescents, requiring the use of techniques for studying human growth and development.
Resumo:
The myopic eye is generally considered to be a vulnerable eye and, at levels greater than 6 D, one that is especially susceptible to a range of ocular pathologies. There is concern therefore that the prevalence of myopia in young adolescent eyes has increased substantially over recent decades and is now approaching 10-25% and 60-80%, respectively, in industrialized societies of the West and East. Whereas it is clear that the major structural correlate of myopia is longitudinal elongation of the posterior vitreous chamber, other potential correlates include profiles of lenticular and corneal power, the relationship between longitudinal and transverse vitreous chamber dimensions and ocular volume. The most potent predictors for juvenile-onset myopia continue to be a refractive error ≤+0.50 D at 5 years of age and family history. Significant and continuing progress is being made on the genetic characteristics of high myopia with at least four chromosomes currently identified. Twin studies and genetic modelling have computed a heritability index of at least 80% across the whole ametropic continuum. The high index does not, however, preclude an environmental precursor, sustained near work with high cognitive demand being the most likely. The significance of associations between accommodation, oculomotor dysfunction and human myopia is equivocal despite animal models that have demonstrated that sustained hyperopic defocus can induce vitreous chamber growth. Recent optical and pharmaceutical approaches to the reduction of myopia progression in children are likely precedents for future research, for example progressive addition spectacle lens trials and the use of the topical MI muscarinic antagonist pirenzepine.
Resumo:
Prostate cancer (CaP) patients with disseminated disease often suffer from severe cachexia, which contributes to mortality in advanced cancer. Human cachexia-associated protein (HCAP) was recently identified from a breast cancer library based on the available 20-amino acid sequence of proteolysis-inducing factor (PIF), which is a highly active cachectic factor isolated from mouse colon adenocarcinoma MAC16. Herein, we investigated the expression of HCAP in CaP and its potential involvement in CaP-associated cachexia. HCAP mRNA was detected in CaP cell lines, in primary CaP tissues and in its osseous metastases. In situ hybridization showed HCAP mRNA to be localized only in the epithelial cells in CaP tissues, in the metastatic foci in bone, liver and lymph node, but not in the stromal cells or in normal prostate tissues. HCAP protein was detected in 9 of 14 CaP metastases but not in normal prostate tissues from cadaveric donors or patients with organ-confined tumors. Our Western blot analysis revealed that HCAP was present in 9 of 19 urine specimens from cachectic CaP patients but not in 19 urine samples of noncachectic patients. HCAP mRNA and protein were also detected in LuCaP 35 and PC-3M xenografts from our cachectic animal models. Our results demonstrated that human CaP cells express HCAP and the expression of HCAP is associated with the progression of CaP and the development of CaP cachexia. © 2003 Wiley-Liss, Inc.
Resumo:
A study has been made of drugs acting at 5-HT receptors on animal models of anxiety. An elevated X-maze was used as a model of anxiety for rats and the actions of various ligands for the 5-HT receptor, and its subtypes, were examined in this model. 5-HT agonists, with varying affinities for the 5-HT receptor subtypes, were demonstrated to have anxiogenic-like activity. The 5-HT2 receptor antagonists ritanserin and ketanserin exhibited an anxiolytic-like profile. The new putatuve anxiolytics ipsapirone and buspirone, which are believed to be selective for 5-HT1 receptors, were also examined. The former had an anxiolytic profile whilst the latter was without effect. Antagonism studies showed the anxiogenic response to 8-hydroxy-2-(Di-n-propylamino)tetralin (8-OH-DPAT) to be antagonised by ipsapirone, pindolol, alprenolol and para-chlorophenylalanine, but not by diazepam, ritanserin, metoprolol, ICI118,551 or buspirone. To confirm some of the results obtained in the elevated X-maze the Social Interaction Test of anxiety was used. Results in this test mirrored the effects seen with the 5-HT agonists, ipsapirone and pindolol, whilst the 5-HT2 receptor antagonists were without effect. Studies using operant conflict models of anxiety produced marginal and varying results which appear to be in agreement with recent criticisms of such models. Finally, lesions of the dorsal raphe nucleus (DRN) were performed in order to investigate the mechanisms involved in the production of the anxiogenic response to 8-OH-DPAT. Overall the results lend support to the involvement of 5-HT, and more precisely 5-HT1, receptors in the manifestation of anxiety in such animal models.
Resumo:
Drugs acting at 5-HT receptors were evaluated on three animal models of anxiety. On the elevated X-maze test the majority of 5-HT1 agonists were found to be anxiogenic. However, ipsapirone was anxiolytic and buspirone and gepirone were inactive. The 5-HT2 agonist DOI and the 5-HT2 antagonist ritanserin were anxiolytic while ICI 169,369, a 5-HT2 antagonist was inactive. All 5-HT3 antagonists tested were inactive in this test, while the indirect serotomimetics zimeldine and fenfluramine were anxiogenic. Neither beta-adrenoceptor agonists nor antagonists had reproducible effects on anxiety in this model. Combined beta-1/beta-2 adrenoceptor antagonists reversed the anxiogenic effects of 8-OH-DPAT while selective beta-1 or beta-2 antagonists did not. On the social interaction model the 5-HT1 agonists 8-OH-DPAT, RU 24969 and 5-MeODMT were anxiogenic and ipsapirone was anxiolytic. The 5-HT2 agonist DOI and the beta-adrenoceptor- and 5-HT- antagonist pindolol were anxiolytic, while the 5-HT2 and 5-HT3 antagonists were inactive. In the marble burying test, the 5-HT upake inhibitors zimeldine, fluvoxamine, indalpine and citalopram, the 5-HT1B/5-HT1C agonists mCPP and TFMPP and the 5-HT2/5-HT1C agonist DOI reduced marble burying without affecting locomotor activity. 5-HT1A agonists and the 5-HT2 and 5-HT3 antagonists were without effect. Lesions of the dorsal raphe nucleus reversed the anxiogenic effects of 8-OH-DPAT in the X-maze model. The implication of these results for the understanding of the pharmacology of 5-HT in anxiety is discussed.
Resumo:
The results of an investigation into how stressors interact with the action of serotonergic agents in animal models of anxiety are presented. Water deprivation and restraint both increased plasma corticosterone concentrations and elevated 5-HT turnover. In the elevated X-maze, water deprivation had a duration-dependent "anxiolytic" effect. The effect of restraint was dependent on the duration of restraint and was to inhibit maze exploration. Water-deprivation did not influence the action of diazepam or any 5-HT1A ligand in the X-maze. Restraint switched the "anxiogenic" effect of 8-0H-DPAT to either "anxiolytic" or inactive, depending on the time after the restraint when testing was performed. The Vogel conflict test detected an "anxiolytic" "anxiolytic"V"anxiolytic""anxiolytic" effect of buspirone which was additive with "anxiolytic" effects of pindolol and propranolol. Diazepam and fluoxetine were also active, but 8-0H-DPAT, ipsapirone, gepirone and yohimbine were inactive. In the elevated X-maze, "anxiogenic" responses to picrotoxin, flumazenil, RU 24969, CGS 12066B, fluoxetine and 8-0H-DPAT were detected. Other 5-HT1A ligands were inactive. Diazepam and corticosterone had "anxiolytic" effects. Increasing light intensity did not change behaviour on the elevated X-maze, but was able to reverse the effect of 8- OH-DPAT to an "anxiolytic" action. This effect was attributed to a presynaptic mechanism, because it was abolished by pCPA. The occurence of different behaviours in different reglons of the maze was shown to be susceptible to modulation by "anxiolytic" and "anxiogenic" drugs. These results are discussed in the context of there being at least two separate 5-HT mechanisms which are involved in the control of anxiety.