964 resultados para Euler equations
Resumo:
The performance of two curved beam finite element models based on coupled polynomial displacement fields is investigated for out-of-plane vibration of arches. These two-noded beam models employ curvilinear strain definitions and have three degrees of freedom per node namely, out-of-plane translation (v), out-of-plane bending rotation (theta(z)) and torsion rotation (theta(s)). The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the force-moment equilibrium equations. Numerical performance of these elements for constrained and unconstrained arches is compared with the conventional curved beam models which are based on independent polynomial fields. The formulation is shown to be free from any spurious constraints in the limit of `flexureless torsion' and `torsionless flexure' and hence devoid of flexure and torsion locking. The resulting stiffness and consistent mass matrices generated from the coupled displacement models show excellent convergence of natural frequencies in locking regimes. The accuracy of the shear flexibility added to the elements is also demonstrated. The coupled polynomial models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Peclet number, Pe = 0.05, 5, and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Peclet numbers (Pe = 0.05) and by a kinetic model at high Peclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale.
Resumo:
Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.
Resumo:
特征分析表明:对原始扰动量的抛物化稳定性方程组(PSE),它在亚超音速区分别具有椭圆和抛物特性,给出PSE特征对马赫数的依赖关系,阐明PSE仅把信息对流-扩散传播特性抛物化,而保留了信息对流-扰动传播特性,因此PSE应称为扩散抛物化稳定性方程(DPSE)。
Resumo:
Based on the first-order upwind and second-order central type of finite volume( UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from 0.3 to 0. 8 and convergence perform excellent with Reynolds number variation from 102 to 104.
Resumo:
将复杂形状区域划分成多块子区域,研究发展了一种多块区域之间迎风守恒型的内边界耦合方法,实现相邻子区域解的光滑过渡,使多区耦合得到总体流场的数值解。对二维翼型跨音速流动和圆板形隆起物超音速流动等进行了分区数值计算,并将计算结果与单区计算结果和实验结果作了比较。并行分区计算引入“先进先出”的同步控制等待机制,实现了高效率并行计算,还分析了影响并行效率的主要因素。
Resumo:
在计算机发达的时代,高雷诺(Re)数绕流计算中有无必要使用简化NS方程组,本文讨论这个问题.主要内容如下:(1)高Re数绕流包含3种基本流动:所有方向对流占优流动、所有方向对流扩散竞争流动和部分方向对流占优部分方向对流扩散竞争流动(简称干扰剪切流动),3个基本流动的特征彼此不同且在流场中所占领域大小彼此相差悬殊,NS方程区域很小,它们的最简单控制方程组Euler、Navier-Stokes(NS)和扩散抛物化(DP)NS方程组的数学性质彼此不同,因此利用Euler-DPNS-NS方程组体系分析计算高Re数绕流流动就是一个合乎逻辑的选择,该法与利用单一NS方程组的常用方法可以彼此检验和补充.(2)流体之间以及流体与外界的动量、能量和质量交换,流态从层流到湍流的演化主要发生在干扰剪切流动中,干扰剪切流及其最简单控制方程--DPNS方程组具有基础意义;DPNS方程组笔者在1967年已提出.(3)诸简化NS方程组:DPNS、抛物化(P)NS、薄层(TL)NS、黏性层(VL)NS方程组的发展、相互关系,它们的历史贡献和今后的用途;它们的数学性质均为扩散抛物型,但它们包含的黏性项彼此有所不同;从流体力学角度来看,它们中只有DPNS方程组能够准确描述干扰剪切流动.提出把诸简化NS方程组统一为DPNS方程组的建议.(4)干扰剪切流--DPNS方程组与无干扰剪切流--边界层方程组之间的关系以及进一步研究干扰剪切流的意义.
Resumo:
We present in this paper the application of B-P constitutive equations in finite element analysis of high velocity impact. The impact process carries out in so quick time that the heat-conducting can be neglected and meanwhile, the functions of temperature in equations need to be replaced by functions of plastic work. The material constants in the revised equations can be determined by comparison of the one-dimensional calculations with the experiments of Hopkinson bar. It can be seen from the comparison of the calculation with the experiment of a tungsten alloy projectile impacting a three-layer plate that the B-P constitutive equations in that the functions of temperature were replaced by the functions of plastic work can be used to analysis of high velocity impact.
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
Resumo:
The following points are argued: (i) there are two independent kinds of interaction on interfaces, i.e. the interaction between phases and the collision interaction, and the jump relations on interfaces can accordingly be resolved; (ii) the stress in a particle can also be divided into background stress and collision stress corresponding to the two kinds of interaction on interfaces respectively; (iii) the collision stress, in fact, has no jump on interface, so the averaged value of its derivative is equal to the derivative of its averaged value; (iv) the stress of solid phase in the basic equations for two\|phase flow should include the collision stress, while the stress in the expression of the inter\|phase force contains the background one only. Based on the arguments, the strict method for deriving the equations for two\|phase flow developed by Drew, Ishii et al. is generalized to the dense two\|phase flow, which involves the effect of collision stress.
Resumo:
By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced.