930 resultados para Equilibrium topology
Resumo:
US presidents have expanded executive power in times of war and emergency,sometimes aggressively so. This article builds on the application of punctuated equilibria theory by Burnham (1999 and Ackerman (1999). Underpinning this theory is the notion that rapid changes in - or external shocks to - domestic and international society impose new and insistent demands on the state. In so doing, they produce important and decisive moments of institutional mobilization and creativity, disrupt a pre-existing, relatively stable, equilibrium between the Congress and the president, and precipitate decisions or nondecisions by the electorate and political leaders that define the contours for action when the next crisis or external shock occurs. The article suggests that the combination of President George W. Bush's presidentialist doctrine, 9/11 and the 'war' on terror has consolidated a new, constitutional equilibrium. While some members of Congress contest the new order, the Congress collectively has acquiesced in its own marginalization. The article surveys a wide range of executive power assertions and legislative retreats. It argues that power assertions generally draw on precedent: on, for example, a tradition of wartime presidential extraconstitutional leadership extending to presidents, such as John Adams and Abraham Lincoln,as well as to Cold War and post-Cold War presidentialism.
Resumo:
This research work aims to study the use of peanut hulls, an agricultural and food industry waste, for copper and lead removal through equilibrium and kinetic parameters evaluation. Equilibrium batch studies were performed in a batch adsorber. The influence of initial pH was evaluated (3–5) and it was selected between 4.0 and 4.5. The maximum sorption capacities obtained for the Langmuir model were 0.21 ± 0.03 and 0.18 ± 0.02 mmol/g, respectively for copper and lead. In bi-component systems, competitive sorption of copper and lead was verified, the total amount adsorbed being around 0.21 mmol of metal per gram of material in both mono and bi-component systems. In the kinetic studies equilibrium was reached after 200 min contact time using a 400 rpm stirring rate, achieving 78% and 58% removal, in mono-component system, for copper and lead respectively. Their removal follows a pseudo-second-order kinetics. These studies show that most of the metals removal occurred in the first 20 min of contact, which shows a good uptake rate in all systems.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
We consider two Cournot firms, one located in the home country and the other in the foreign country, producing substitute goods for consumption in a third country. We suppose that neither the home government nor the foreign firm know the costs of the home firm, while the foreign firm cost is common knowledge. We determine the separating sequential equilibrium outputs.
Resumo:
A Masters Thesis, presented as part of the requirements for the award of a Research Masters Degree in Economics from NOVA – School of Business and Economics
Resumo:
In this work, a volumetric unit previously assembled by the research group was upgraded. This unit revamping was necessary due to the malfunction of the solenoid valves employed in the original experimental setup, which were not sealing the gas properly leading to erroneous adsorption equilibrium measurements. Therefore, the solenoid valves were substituted by manual ball valves. After the volumetric unit improvement its operation was validated. For this purpose, the adsorption equilibrium of carbon dioxide (CO2) at 323K and 0 - 20 bar was measured on two different activated carbon samples, in the of extrudates (ANG6) and of a honeycomb monolith (ACHM). The adsorption equilibrium results were compared with data previously measured by the research group, using a high-pressure microbalance from Rubotherm GmbH (Germany) – gravimetric. The results obtained using both apparatuses are coincident thus validating the good operation of the volumetric unit upgraded in this work. Furthermore, the adsorption equilibrium of CO2 at 303K and 0 - 10 bar on Metal-Organic Frameworks (MOFs) Cu-BTC and Fe-BTC was also studied. The CO2 adsorption equilibrium results for both MOFs were compared with the literature results showing good agreement, which confirms the good quality of the experimental results obtained in the new volumetric unit. Cu-BTC sample showed significantly higher CO2 adsorption capacity when compared with the Fe-BTC sample. The revamping of the volumetric unit included a new valve configuration in order to allow testing an alternative method for the measurement of adsorption equilibrium. This new method was employed to measure the adsorption equilibrium of CO2 on ANG6 and ACHM at 303, 323 and 353K within 0-10 bar. The good quality of the obtained experimental data was testified by comparison with data previously obtained by the research group in a gravimetric apparatus.
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
This research computes an Equilibrium Labor Share using a VECM for a panel of 19 countries, analyzes what determines the speed at which the labor share adjusts towards that equilibrium and decomposes this adjustment in terms of real wages and employment. Results suggest that the speed at which a country adjusts decreases with employment protection legislation and labor taxes. Most countries’ labor shares adjustment is made through real wages changes instead of changing employment, suggesting that wage moderation policies may play an important role on the adjustment process without harming employment. Keywords: Equilibrium
Resumo:
This research computes an Equilibrium Labor Share using a VECM for a panel of 19 countries, analyzes what determines the speed at which the labor share adjusts towards that equilibrium and decomposes this adjustment in terms of real wages and employment. Results suggest that the speed at which a country adjusts decreases with employment protection legislation and labor taxes. Most countries’ labor shares adjustment is made through real wages changes instead of changing employment, suggesting that wage moderation policies may play an important role on the adjustment process without harming employment.
Resumo:
Using numerical simulations, we compare properties of knotted DNA molecules that are either torsionally relaxed or supercoiled. We observe that DNA supercoiling tightens knotted portions of DNA molecules and accentuates the difference in curvature between knotted and unknotted regions. The increased curvature of knotted regions is expected to make them preferential substrates of type IIA topoisomerases because various earlier experiments have concluded that type IIA DNA topoisomerases preferentially interact with highly curved DNA regions. The supercoiling-induced tightening of DNA knots observed here shows that torsional tension in DNA may serve to expose DNA knots to the unknotting action of type IIA topoisomerases, and thus explains how these topoisomerases could maintain a low knotting equilibrium in vivo, even for long DNA molecules.